

4 • MXDJ.COM 7 • 2004

The Power of Your
Descendants
Go forth and style with CSS
by stephanie sullivan

Flash Virtuosos
American Design Awards reward
innovative design potential

Form vs Feature
The new Extrude tool in
FreeHand MX
by ron rockwell

An OO Approach to ‘War’
Child’s play for
professional developers
by hal helms

Best Practices in
Kiosk Design
There’s no such thing as ‘foolish
consistency’ here
by roy crisman

july 2004

10

Virtuosos

18

30

38

52

50 xile
Cartoon
by louis f. cuffari

7 Web
Standards
The right thing
to do
by jeffrey veen

22 CSV in Flash MX 2004
Make your classes easy and flexible
by danny patterson

26 Creating Games in
Macromedia Flash MX 2004
Escape from reality
by glen rhodes

14 Zoomin’ on the Web
Add new dimensions to your
applications
by john williams

44 Best Kept Secret in Town
Application development with
Macromedia Director
by jason macdonald & paul-catalin oros

58 vanguard
The Meatrix
by free range
graphics

MXDJ.COM • 7

’ve been involved in the Web stan-

dards community almost as long as

I’ve been working on the Web, and

I’ve long felt that designing to W3C

recommendations is the right thing to

do. It’s easy to evangelize standards like

XHTML and CSS, but when it came time

to put my money where my mouth is for

the redesign of my company’s Web site,

adaptivepath.com, my partners and I had

a very frank discussion about whether

the effort – and it would be a lot of effort

– was really going to be worth it.

We had to ask ourselves, how impor-

tant is standardization to an individual

business like ours? Do Web standards

give organizations a return on invest-

ment? Does the transition to XHTML and

CSS make financial sense? The answer to

those questions is yes.

Web standards help you:

• Speed development

• Simplify maintenance and increase

opportunity

• Open up site accessibility

• Reduce bandwidth costs

• Improve user experience

Speed Development
So many of our clients have spent

numerous hours building multiple ver-

sions of their sites, attempting to present

a perfect design for as many users as

possible who may be viewing their sites

on any variety of browsers and devices.

For every new design, there is an increase

in development, QA, and maintenance

time. We wanted to spend less time man-

aging the site and still ensure that it ren-

dered properly on available browsers.

With over 95% of our audience now visit-

ing our site with standards-compliant

browsers, we knew it was the perfect

time to make the switch. Using Web stan-

dards, we were able to achieve these

goals by developing only one set of

HTML pages and one stylesheet.

Adhering to Web standards forces

you to error check your code to ensure it

complies with the level of standards

you’ve selected. Simply declaring which

version of HTML (or, for that matter, XML)

you’re using will let you validate your

pages against those specifications.

Running your pages through a validator

like the one available in Dreamweaver

MX 2004 or x (online tool of choice) can

save you an enormous amount of QA

time. Before you even open the pages in

your target browsers, you can run the

validator and see exactly where your

errors are. This reduces the time develop-

ers spend on QA and gives your site

incredible consistency between

browsers. While current browsers still

have rendering bugs, they are far less

severe than they were five years ago.

Simplify Maintenance,
Increase Opportunity

For years, the standards community

has been extolling the virtues of keeping

visual design separate from content, but

logically linked to each page. This clean

separation makes it much easier for you

to develop and maintain your pages for

two main reasons. First, it makes the

pages easier to update because of your

content presentation such as type style,

color, size, background colors and

images, and even positioning of content

blocks. Second, the separation of content

and design corresponds to most teams’

distinctions between design and editorial

work, allowing the teams to work in par-

allel rather than sequentially. A nice by-

product is code simplicity. This structure

requires you to depart from coding

pages with HTML in favor of XHTML. Your

files become ridiculously simple because

most XHTML pages are little more than a

collection of semantically rich <div> and

<p> tags, with a pointer to a powerful

CSS file.

Recently, we hosted a CSS file for a

client on our development server

while they began production on con-

tent and back-end systems. As we con-

tinued to iterate the design, we were

able to simply edit the file without

Group Publisher Jeremy Geelan
Art Director Louis F. Cuffari

EDITORIAL BOARD
Dreamweaver Editor
Dave McFarland
Flash Editor
Jesse Warden
Fireworks Editor
Kleanthis Economou
FreeHand Editor
Louis F. Cuffari
Ron Rockwell
ColdFusion Editor
Robert Diamond

INTERNATIONAL ADVISORY BOARD
Jens Christian Brynildsen Norway,
David Hurrows UK, Joshua Davis USA,
Jon Gay USA, Craig Goodman USA,
Phillip Kerman USA, Danny Mavromatis USA,
Colin Moock Canada, Jesse Nieminen USA,
Gary Rosenzweig USA, John Tidwell USA

EDITORIAL
Executive Editors
Gail Schultz, 201 802-3043
gail@sys-con.com
Jamie Matusow, 201 802-3042
jamie@sys-con.com

Editors
Nancy Valentine, 201 802-3044
nancy@sys-con.com
Jennifer Van Winckel, 201 802-3052
jennifer@sys-con.com

Assistant Editor
Torrey Gaver, 201 802-3041
torrey@sys-con.com

Technical Editors
James Newton • Sarge Sargent

To submit a proposal for an article, go to
http://grids.sys-con.com/proposal.

Subscriptions
E-mail: subscribe@sys-con.com
U.S. Toll Free: 888 303-5282
International: 201 802-3012
Fax: 201 782-9600
Cover Price U.S. $5.99
U.S. $29.99 (12 issues/1 year)
Canada/Mexico: $49.99/year
International: $59.99/year
Credit Card, U.S. Banks or Money Orders
Back Issues: $12/each

Editorial and Advertising Offices
Postmaster: Send all address changes to:
SYS-CON Media
135 Chestnut Ridge Rd.
Montvale, NJ 07645

Worldwide Newsstand Distribution
Curtis Circulation Company, New Milford, NJ

List Rental Information
Kevin Collopy: 845 731-2684,
kevin.collopy@edithroman.com,
Frank Cipolla: 845 731-3832,
frank.cipolla@epostdirect.com

Promotional Reprints
Kristin Kuhnle, 201 802-3026
kristin@sys-con.com

Copyright © 2004
by SYS-CON Publications, Inc. All rights
reserved. No part of this publication may be
reproduced or transmitted in any form or by any
means, electronic or mechanical, including
photocopy or any information storage and
retrieval system, without written permission.

MX Developer’s Journal (ISSN#1546-2242)
is published monthly (12 times a year) by
SYS-CON Publications, Inc., 135 Chestnut
Ridge Road, Montvale, NJ 07645.

SYS-CON Media and SYS-CON Publications,
Inc., reserve the right to revise, republish, and
authorize its readers to use the articles submit-
ted for publication. MX and MX-based marks
are trademarks or registered trademarks of
Macromedia, in the United States and other
countries. SYS-CON Publications, Inc., is inde-
pendent of Macromedia. All brand and product
names used on these pages are trade names,
service marks or trademarks of their respective
companies.

vie
w

p
o

in
t

i
The right thing to do

by jeffrey veen

Web Standards

8 • MXDJ.COM

vi
e

w
p

o
in

t
SYS-CON MEDIA
President & CEO
Fuat Kircaali, 201 802-3001
fuat@sys-con.com
Vice President, Business Development
Grisha Davida, 201 802-3004
grisha@sys-con.com
Group Publisher
Jeremy Geelan, 201 802-3040
jeremy@sys-con.com

ADVERTISING
Senior Vice President, Sales & Marketing
Carmen Gonzalez, 201 802-3021
carmen@sys-con.com
Vice President, Sales & Marketing
Miles Silverman , 201 802-3029
miles@sys-con.com
Advertising Sales Director
Robyn Forma, 201 802-3022
robyn@sys-con.com
Advertising Sales Manager
Megan Mussa, 201 802-3023
megan@sys-con.com
Associate Sales Managers
Kristin Kuhnle, 201 802-3026
kristin@sys-con.com
Beth Jones, 201 802-3028
beth@sys-con.com
Dorothy Gil, 201 802-3024
dorothy@sys-con.com

PRODUCTION
Production Consultant
Jim Morgan, 201 802-3033
jim@sys-con.com
Lead Designer
Louis F. Cuffari, 201 802-3035
louis@sys-con.com
Art Director
Alex Botero, 201 802-3031
alex@sys-con.com
Associate Art Director
Richard Silverberg, 201 802-3036
richards@sys-con.com
Assistant Art Director
Tami Beatty, 201 802-3038
tami@sys-con.com

SYS-CON.COM
Vice President, Information Systems
Robert Diamond, 201 802-3051
robert@sys-con.com
Web Designers
Stephen Kilmurray, 201 802-3053
stephen@sys-con.com
Matthew Pollotta, 201 802-3054
matthew@sys-con.com
Online Editor
Lin Goetz, 201 802-3045
lin@sys-con.com

ACCOUNTING
Financial Analyst
Joan LaRose, 201 802-3081
joan@sys-con.com
Accounts Payable
Betty White, 201 802-3002
betty@sys-con.com
Accounts Receivable
Shannon Rymsza, 201 802-3082
shannon@sys-con.com

EVENTS
President, SYS-CON Events
Grisha Davida, 201 802-3004
grisha@sys-con.com
Conference Manager
Lin Goetz, 201 802-3045
lin@sys-con.com

CUSTOMER RELATIONS
Circulation Service Coordinators
Shelia Dickerson, 201 802-3082
shelia@sys-con.com
Edna Earle Russell, 201 802-3081
edna@sys-con.com
Linda Lipton, 201 802-3012
linda@sys-con.com
JDJ Store Manager
Brundila Staropoli, 201 802-3000
bruni@sys-con.com

having to integrate with their version-

ing and release system. By working in

parallel, we dramatically reduced the

time-to-market.

Using this structure also lets you

immediately react to visitor feedback.

Once you site is in production, you'll like-

ly decide to change some aspect of the

design – the size of your headlines, for

example. If you had embedded the style

information in each content page, it

would take hours or even weeks to

adjust the styles. But by using CSS stan-

dards, you can change thousands of

pages by modifying a few lines of code

in one file.

Speeding development and mainte-

nance is a competitive and financial

advantage. Shorter development times

not only reduce costs, but free resources

sooner, thereby increasing opportunity.

Open Up Access Options
Clean code pays even more divi-

dends. Browsers that don’t offer compli-

ant CSS implementations can now simply

skip the style. In other words, semantic

XHTML markup can be rendered in any

browser – including nontraditional

clients like mobile phones, PDAs, voice

interfaces and screen readers, and any-

thing else that supports the most basic

tag set.

A standards-compliant site that is

coded for simplicity solves problems with

mobile access, Section 508 accessibility,

and past-version browser compatibility.

So you get all that and it’s easier to

develop and maintain? Indeed. You can

even eliminate some hard costs in the

process.

Reduce Bandwidth Costs
When we stripped away the fonts,

tables, and little images used as design

elements on our home page, we reduced

the size of the code from 20.9K to 9.2K.

Now, this may not seem like a lot, but it

would aggregate to quite a bit if our site

generated heavy traffic.

Our 56% reduction in bandwidth

usage is hardly relevant to a site that gets

a few thousand page views a day, but

large commercial sites get that much

traffic in a minute or two. The most popu-

lar sites often get tens of millions of page

views a day.

Saving 30K to 40K from each page

view – plus a cached stylesheet that

never needs to be downloaded again –

can save you thousands of dollars per

month. Ever see an IT guy get excited

about a new design? You will.

Improve User Experience
Cold, hard cash is easy to quantify,

but there are additional benefits to slim-

ming down code. It’s no secret that a

faster, more lively site will nearly always

translate to a better overall user experi-

ence.

Huge interfaces squeezed through

plodding modem connections have

been a plague since the Web’s incep-

tion. The increasing dominance of

broadband has only helped a bit. A

hotel phone line plugged into a busi-

ness traveler’s laptop may be the only

tenuous link you’ve got to a new cus-

tomer. Adopting clean, standardized

code gives users a shortcut to accom-

plishing their goals at your site.

Justifying the Switch
These aren’t formulas for determin-

ing the ROI of migrating to standards,

but they are some pretty good financial

justifications. “It’s what all the cool sites

are doing” shouldn’t be your only point

when arguing for a switch to XHTML and

CSS.

The economic benefits of standardi-

zation are tangible: faster development,

simplified maintenance, reduced band-

width costs, improved user experience,

expanded access and opportunity, and,

of course, the assurance that Web users,

regardless of platform, browser, or OS,

can view content freely and consistent-

ly.... So what are you waiting for?

Jeffrey Veen is a

founding partner of

Adaptive Path, a pre-

mier user experience

consulting company.

He launched

HotWired.com in

1994, and is author of

The Art & Science of

Web Design and

HotWired Style.

jeff@adaptivepath.com

“By using CSS standards, you can
change thousands of pages by

modifying a few lines of code in one file”

10 • MXDJ.COM 7 • 2004

you’ve decided this

is the year you’ll

really get a handle

on CSS, one of the

first things you

want to learn to do

is harness its power

– and avoid “classi-

tis.” Understanding

the document tree

– the structure of

the document and

the relationships

between the elements – is the first step in

writing highly efficient and compact CSS.

A mistake that many of us make

when learning to use CSS is to put classes

on most everything in the document to

provide the specific styling desired. A bad

case of classitis is hardly better than put-

ting font tags everywhere. Yes, you’re

beginning to separate structure from

presentation, but it’s hardly elegant and

efficient. Let’s begin this exercise by look-

ing at a simple hierarchy in the body area

of an X/HTML document. First we’ll look

at the code, then the document tree (see

Code I).

The hierarchy of the document tree

can be demonstrated very much like a

family tree. The example in Code I could

appear graphically in the manner shown

in Image I.

Notice that the hierarchy begins with

the body element – much like your great

grandparents might begin a portion of

your family tree. From the body element

descend the two divs – #content and

#side. From #content descend the h1, p,

and ul elements and it continues the

same way throughout the document

from there. The beauty of understanding

the ancestral tree of your document is

the ability it gives you to take advantage

of the relationships that exist between

elements in writing your CSS selectors.

Instead of giving the various elements

different classes, you can leave your

X/HTML portion clean and simple and

write a descendant selector. (Don’t be

confused. Descendant selectors were

called contextual selectors in CSS1.)

A descendant selector is simply a list

of other selectors, in order of their

appearance in the document tree, sepa-

rated by spaces. The selectors used to

create the descendant selector can be

any of the following types:

1. Type selectors: A type selector is sim-

ply the redefinition of an element in

your document. For example, if you

write a CSS selector called ul, the

attributes you write for that selector

will apply to every ul element in your

document. These selectors are the first

thing I write when beginning to code a

new site.

2. ID selectors: An ID can be given to any

element in your document. To write

succinct, clean CSS, I generally apply

my IDs to containers on the page,

whether they’re divs or tables. An ID

can only be applied once on a page.

(See my article, Persistent Page

Indicator, at http://nemesis1.f2o.

org/aarchive?id=9 for an example of

practical uses for an ID indicating the

down state of a menu button.

Especially if you enjoy using

Dreamweaver templates.)

3. Class selectors: A class selector can be

applied numerous times in a docu-

ment. I generally use a class after I’ve

redefined my elements (type selec-

tors), defined my page area containers

(IDs), and created all descendant selec-

tors. Anything that falls outside those

areas receives a class if needed.

Using our original X/HTML, let’s look

at an example of this. Since this article is

about descendant selectors, I won’t go

into detail about the selectors I’m writing

except to point out what kind they are. As

mentioned previously, I always start with

my type selectors. In this small document,

I will only include the body type selector.

I’ve given it the very basics (example files,

if you’d like to work along, as well as the

links used throughout this article are

available from www.violetsky.net/mx

dev/descend). Next, I move to the ID

selectors for my containers. This will

include #side and #content. I define their

placement using those selectors. Now it’s

time for the descendants.

If you’re following along and viewing

the exercise in a browser, you likely noticed

in the text of Code I that certain sentences

are to be in color. Of course if you’re follow-

ing this exercise in a browser, it’s obvious

that at this point, they’re all black. Many

people would wrap those sentences in a

 and give them a class. But there’s

no need for all that extra code. We’ve got

the power of the descendants at our beck

and call. Notice that in the first paragraph

of the #content div, there’s a sentence

wrapped in a strong element. We’ll use a

descendant selector to color it orange. The

descendant selector will begin with the

highest level descendant and move in to

the element we’re styling (each separated

by a space). Notice in the graphical exam-

ple above, the strong element we want to

give the orange color to descends from the

p element. You could write the following

selector:

p strong {

color: #C30;

}

If you view this in your browser, you’ll

see why this won’t give us the results we

want on this page. All strong elements

descending from p elements are now

orange. Since that combination exists in

7 • 2004 MXDJ.COM • 11

12 • MXDJ.COM 7 • 2004

the #side div, that sentence is now orange

as well, an undesired result. We need to

be more specific in our descendant.

Here’s the descendant selector that will

work in our page:

#content p strong {

color: #C30;

}

Due to the specificity in the previous

example, the strong element in the #side

div is now black again. We could have writ-

ten a simple type selector for the h1 ele-

ment. I chose instead to put the font sizing

into the selectors for the div containers and

thus, due to specificity which we’ll discuss

here later, I need to create the h1 selector

as a descendant of the #content div. It was

written as #content h1 so that it would over-

ride the sizing placed on the #content div.

Let’s look at the other example in the

unordered list. Using the principle we just

learned, take a guess at the selector that

could be written before you read on.

#content ul strong {

color: #036;

}

You could have also written – #content ul

li strong to be even more specific. Either will

work. Why would you want to be more spe-

cific? Glad you asked. Many times you’ll hear

that if you want one selector to override

another, simply put it later in the CSS cas-

cade. That’s not completely true. The W3C

has set up a formula for the calculation of a

selector’s specificity (www.w3.org/TR/REC-

CSS2/cascade.html#specificity). In a nutshell,

the ID selectors have the highest value, fol-

lowed by classes and pseudo-classes and

last/least are the type selectors. You can read

the guidelines at the above URI learn how to

calculate them, but keeping the above prin-

ciples in mind will likely guide you through

the more simple combinations.

To experiment with the specificity

idea, create both of the above selectors –

#content ul li strong and #content ul

strong. Create them in that order so that

the less specific selector is second. Give

them two different colors. Notice that the

more specific selector, even though it is

first in the cascade, still overrides the less

specific selector.

The principles of creating selectors

that I’ve just discussed should help you

really lighten up your CSS documents.

For more examples of writing efficient

CSS, see John Gallant and

Holly Bergevin’s free article,

Writing Efficient CSS, at

Community M (www.comm

unitymx.com/abstract.

cfm?cid=90F55). Now let’s

move on to a real world exam-

ple of the power of descen-

dant selectors – a site map.

Creating a Site Map Using
Descendant Selectors

I’ve found that descendant selectors can

be a simple and elegant solution for creat-

ing a site map. Using nested unordered lists

and descendant selectors, you can make a

very structured, easy-to-read map of any

site under your control – no matter how

complex. Your visitors will thank you for the

nice hierarchal picture. And you’ll be happy

with the lack of having to class, or style

inline, the whole hierarchical mess in your

X/HTML document. It’s all in the CSS, baby.

First, we’ll take a look at the code (if

you’re working along with he example

files this code is in the sitemap.htm file).

This example uses three site sublevels. It

can be used with as many levels as you

need. Simply nest an unordered list for

each one (see Code II).

Notice that Code II simply has three

levels of nested unordered lists. And also

notice that all the lists in the main con-

tent area are links (as any self-respecting

site map would be). I’ve included an

unordered list in the #side div as well so

that you can see how handy more specif-

ic descendant selectors can be.

Now let’s visualize the document tree

for the above code (see Image II).

It’s pretty straightforward, isn’t it? You

can see the way one list descends from

the next. Now let’s look at what we can

do with the CSS. I’m going to keep the

properties in the selectors pretty simple

here. But play around in your own CSS

document using background images and

custom bullets. You can get some inter-

esting looks. (If at any time in the follow-

ing portion of the exercise you get con-

fused by the descendant selectors, avail

yourself of the SelectORacle –

http://gallery.theopalgroup.com/selector

acle/ – he knows all.)

We’ll leave the basic selectors from

the previous page (only removing the two

unnecessary descendant selectors – #con-

tent p strong and #content ul strong) and

continue adding on to our CSS. Visually,

what I want to do with the site map is

alternate between a square and a circle

bullet. I also want the bullets to be

orange, but I want links to start with a

brighter blue and, at each level, move to a

darker hue. It’s just a simple visual cue, in

addition to the natural indentation, to let

people visualize the difference between

the levels. Last, I’ll remove the underlines

im
a

g
e

 I

im
a

g
e

 I
I

Stephanie Sullivan is a

Web developer, partner

at CommunityMX

(www.communitymx.co

m), owner of VioletSky

Design (www.violet-

sky.net), and contribut-

ing author of

Dreamweaver MX

2004 Magic.

info@violetsky.net

c
o

d
e

 III

on the links but have them roll over to

orange with underlines. Let’s get started.

The first thing I want to establish is

that all ul on my page should be orange.

Remember, this will style all ul, not just the

ones in the #content div. Something to

remember about lists that contain links –

like in the case of site maps – even though

you’ll give the links their own color, the

bullet itself will be the color you’ve given

to the list, not the link. Remember, the link

is contained in the list. Since I want my

bullet to be the complementary orange to

the link’s blues, I assign that to the ul:

ul {

color: #C30;

}

Now I’ll remove all the underlines

from the links using a descendant selec-

tor. This one will take care of all the lists

no matter how nested they are.

Descendants do not care how far down

the document tree they are. They just

know that they descend and thus they

obey (if only our children were that way):

ul a {

text-decoration: none;

}

In order to have every other level alter-

nate the square bullets with the round

ones, I’m going to group selectors. If you

haven’t tried it, grouping is yet another

way to cut down on your CSS document

weight. If you have selectors with identical

properties, simply place one after the next

separated by a comma and a space (the

space is imperative for it to work properly).

Let’s look at an example:

ul li, ul ul ul li {

list-style: square;

}

Notice that we gave only the list

items from the first- and third-level

unordered lists the square list style. Let’s

give the second level lists a round disc

style:

ul ul li {

list-style: disc;

}

Next, we need to give each level its

own link color as I described previous-

ly. I’m also going to give the primary

level a heavier, bold styling. This

means I’ve got to set any lists that fol-

low back to their normal weight (see

Code III).

As we discussed, descendants don’t

care where they come in the document

tree. So once we changed the font

weight back to normal, the next level fol-

lows suit. Last, we need to set the hover,

active, and focus styles of our links (for

further information about the accessibili-

ty reasons for these link styles as well as

more information about descendants and

styling and positioning with CSS, see my

tutorial at Community MX – From Design

to Completion: Case Study One –

www.communitymx.com/abstract.cfm?ci

d=A5BE27AD9A15909B). Since I want all

the rollover styles to be the same, I have

to set them only once:

ul li a:hover, ul li a:active, ul li

a:focus {

color: #C30;

text-decoration: underline;

}

Save and upload the page. You

should have three levels of blue links

with orange bullets. The side bar list

should be orange. The side bar list could

be styled as buttons if you wish, using

descendant selectors that begin with

#side. There would be no conflict. See

how powerful it is? In this example, the

only extra information stored in the actu-

al X/HTML portion of the document is

two little IDs. Not a single class was

harmed in the writing of this article. As

always, go forth and style!

c
o

d
e

 I
I

c
o

d
e

 I

7 • 2004 MXDJ.COM • 13

<body>
<div id="content">

<h1>This is the heading</h1>
<p>This is the paragraph text.

This strong sentence should
be orange. And this one
should not.</p>

This is a regular list

item.
This strong list item

should be blue.
This is a regular list

item.

</div>
<div id="side">

<p>This is the side content.
This strong sentence should
be bold with no color. And

this sentence is normal again. </p>
</div>
</body>

<body>
<div id="content">

<h1>Site Map </h1>

Primary Level
Link 1

Secondary level
link 1

Tertiary level
link 1

Tertiary level
link 2

Secondary level
link 2

Primary Level
Link 2

Secondary level
link 1

Primary Level
Link 3

Secondary level
link 1

Secondary level
link 2

Tertiary level
link 1

Primary Level
Link 4

</div>
<div id="side">

Side Item 1
Side Item 2
Side Item 3

<p> This is side content in para-

graph form. And of course, if you
chose, you could go on and on till
half of forever.</p>
</div>
</body>

ul li a {
color: #005FBE;
font-weight: bold;
}
ul ul li a {
color: #004C97;
font-weight: normal;
}
ul ul ul li a {
color: #036;
}

14 • MXDJ.COM 7 • 2004

f Flash is the death of HTML,

Zoomify may be the death of JPGs,

GIFs, and PNGs. While this sounds

like marketing hoopla, zooms on the

Web may change how designers and

developers display images. Ultimately,

this will enable quick, interactive access

to high-resolution imagery on the Web,

CD-ROM, and handheld devices creating

richer, more informative, and more enter-

taining user experiences just by improv-

ing the way images are delivered.

Basically, Zoomify is a set of Flash MX

2004 APIs. Combine those with a “zoomi-

fied” image and you’ve got an SWF that

allows users to pan and zoom. Creating

an image is as simple as opening the

Zoomifyer droplet. This .exe goes to work

copying an image many times at different

resolution levels, breaking it up into thou-

sands of JPGs. When combined, the JPGs

run resolution levels from thumbnail all

the way up to the full resolution image,

broken up into smaller tiles. This pyrami-

dal tiling concept is popular with Scalado

and Viewpoint, other companies with

products in the Web zoom niche.

Although any image can be dropped

onto the droplet for conversion, results

are the most dramatic with images of

large dimensions. The only size consider-

ation, perhaps, is the 2GB restriction of

Adobe Photoshop. Zoomify has no size

restrictions. I have converted an image

up to 1.5GB quickly and with no prob-

lems. The best part is the resulting folder

of images was not even one-tenth that of

the original image’s size while maintain-

ing high-quality imagery. The images

should be the original image, not com-

pressed or lossless. BMPs seem to work

the best, but the program will work with

TIFs, JPGs, and GIFs. The droplet will not

convert PNGs.

The easiest route to creating a

Zoomify image is to drag and drop the

image to be converted into a folder of

JPGs; make an HTML embed statement

with parameters, such as initial view,

zoom level, show/hide navigator window,

show/hide toolbar, and other parameters;

drop that folder of JPEGs, the HTML file,

and a small SWF onto your Web server;

and you’re good to go. This set of files is

available in the Zoomifyer 3 Extension

folder, in Designer Tools/Simple Web

Page. One strength of this scheme is that

a single URL and single SWF can be used

to deliver many images. With a URL that

includes a question mark, parameters can

be passed as a FlashVars parameter. For

example,

http://www.mySite.com/myDirectory/zoo

mifyURLDrivenWebPage.htm?zoomifyIma

gePath=http://www.mySite.com/con-

tent/myImageFolder/&zoomifyX=0.0&zo

omifyY=0.0&zoomifyZoom=-

1&zoomifyToolbar=1&zoomifyNavWindo

w=1.

The image path is specified; initial x, y,

and zoom are set; and the toolbar and

nav window are set to display. Many

more parameters are available allowing

basic functionality without the need to

create separate zooms.

Zoomifyer for Flash MX extends this

simple process into a workflow for creat-

ing high-impact Web sites. When

installed, Zoomify components are added

to the Flash Components panel and

become available to be dragged and

dropped into any movie.

Using an Image with
Zoomify

To use an image with Zoomify, create

a development folder and place your

folder of images into that folder. Start a

new Flash project and save it to the

development folder. Drag the

ZoomifyViewer component onto the

stage. Select the component and give it

an instance name. Click the Launch

Component Parameters Panel button and

then browse for your image folder. Note:

You may also choose to convert the

image right here, by clicking the

“Convert” button in the Component

inspector. Click “Continue” once you’ve

found the image folder. The image should

appear in the window.

The development folder has been set

relative to your Flash movie. You may find

it useful to move the images to your Web

server and type in the absolute path to

the folder. Either way, your image should

appear in the component inspector win-

dow so you may set other parameters if

you wish.

Press Ctrl+Enter to test your movie.

Pretty slick, but you can’t move around

the image.

Close the test window. Next, drag the

ToolbarStandard component and drop it

onto the stage. Placing it at the bottom-

center of the image seems to be an intu-

itive place to get users to interact with it.

One more step: we need to point it to the

correct instance. In the Properties panel,

select Target ZoomifyViewer and type in

the instance name you gave the viewer.

Test your movie and you’ll be able to

test drive

Zoomin’ on the Web

Add new dimensions to your applications
by john williams

i

“results are the most
dramatic with images of

large dimensions”

zoom, pan, and check out the clarity of

the image. You can also set “Show Slider”

in the properties panel to “false” so the

“slider” arrow is not visible. Add a bit of

ActionScript and you can create a button

to toggle the Toolbar on and off. Test the

movie. We’ve just gone interactive.

Images I – III show different zooms of the

U.S. Capitol.

One thing to note about the

StandardToolbar component: it’s just an

object. Open it in the Library and you’ll

notice you can tear it apart and re-skin

the buttons, easily matching the look and

feel of the application you’re building.

Another incredibly useful component

is NavWindow. Drag it onto the stage;

upper-left is a pretty good location for

this. Again, target the instance of the

viewer. The NavWindow provides an

overview of the image with a red box

indicating the image boundaries in the

main viewer. Clicking and dragging the

red box provides a quick way to navigate

a large image. You may resize the window

to match your overview image by chang-

ing width and height in the component

properties window. Note: the image that

is used for the overview is a perfect

image for use as a thumbnail. In your

Web page, point your image link to

your imagesFolder/TileGroup0/0-0-

0.jpg.

You may notice other compo-

nents there. ZoomScale provides a

measuring component to your movie.

This feature is used widely in conjunction

with medical imagery, forensic images,

and high-resolution satellite imagery –

any image where scale might be impor-

tant. Drag it onto the stage to get a feel

for how it works. Again, target the

instance name of the viewer. You should

know the units of your image at the high-

est resolution. You may change pixels per

unit, units per image, source magnifica-

tion, and ruler units from yoctometers to

yottameters. Test your movie and you

should see this the scale update as you

zoom in and out of the movie.

Other components in the toolbox

include a hotspot creator and slideshow.

Both are easy to use, but do require a bit

of configuration. Drag the

ZoomifyHotspot component onto your

movie. The button that appears can be

pressed to toggle the caption on and off

by the user. Open Component Inspector

for insight into all the configurations this

tool has to offer. First target the Zoomify

viewer instance you created. The

Development folder path should be the

folder where your project is located. Click

“Get” to automatically retrieve the image

path or folder of the viewer component.

The image you’ve been using should

appear in the window. Now it’s time to

set up some hotspots. Click “Add” and a

box with text will appear. It may be easi-

er to zoom into the area to which you

want to add the hotspot, then click

“add.” Hotspot 0 should appear with that

text, populating both “Edit selected

name” and “Caption Text.” Go ahead and

edit the selected name and change cap-

tion text to whatever text you want to

appear in the movie. You may use the

nudge tools and zoom in/zoom out tools

to position and size the hotspot text to

your liking.

Test your movie. You can leave it at

that or add a URL link that will take the

user to that site when they click on the

hotspot. You may change the text color

and background color. Add as many

hotspots as you wish in their appropriate

7 • 2004 MXDJ.COM • 15

im
a

g
e

 I

im
a

g
e

 I
I

im
a

g
e

 I
II

16 • MXDJ.COM 7 • 2004

locations. The only drawbacks to the text

hotspots are lack of font control and the

fact that you cannot create a transparent

background. However, you can add GIFs

or JPGs to the image as well as SWFs. Just

type the path to the link to the image or

SWF in the “Graphics/media URL.” These

can be linked to other URLs too. Images

IV – VII show the Pleiades Hotspot creat-

ed with Zoomify.

Zoomify Slideshow
Open a new project and save it to

your working directory. Drag the

“ZoomifyViewer” component onto the

stage and name the instance “slideshow.”

This will become the window for our

slideshow. Now drag the

“ToolbarStandard” into the bottom-cen-

ter of the image so users can interact

with the image. Finally, drag

“ZoomifySlideshow” onto the stage. Don’t

forget to target both the toolbar and the

slideshow components to the main

ZoomifyViewer instance you first dragged

onto the stage. Click “Get” next to the

“development folder” input area and the

development folder should auto-popu-

late. Now you can add views to your

slideshow. You can target a zoom you’ve

already created, or the inspector will

allow you to convert an image while you

work. Select the area of your initial zoom

and the zoom level and the next step is

to select the transition effect and the

slide interval. Test your movie to view the

slideshow.

Feature Combinations
Creating your own combinations of

features is possible through a very pow-

erful and well-documented set of APIs.

One of the most approachable is

zoomToView and is demonstrated in the

examples included in the download as

“Smooth Transition.”

Let’s see how this might work with

some ActionScript. Create a new project

and save it. Drag the ZoomifyViewer com-

ponent onto the stage and name it

zoom1. Drag “ToolbarStandard” compo-

nent onto the stage and target the viewer

instance, zoom1. Now that gives users the

simple interactive interface. What if we

wanted users to go to a specific spot and

give them a nice ride while we’re at it?

Let’s drag a button component onto the

stage and attach the ActionScript shown

below.

on(release)

{

_root.zoom1.zoomToView(0.042,

0.12, 200, 5000, 10,"");

}

This is telling the movie that when

the button is pressed, set the Zoomify

movie instance to zoom1. The parame-

ters indicate destination X, destination

Y, zoom value, duration, interval rate,

and callback. The interval rate is

expressed in milliseconds. In this case,

an update of position will occur every

10 milliseconds or 100 times per sec-

ond. With the duration set to 5000,

there will be 500 updates during the

total transition.

Another easy yet powerful effect can

be created by combining getX, getY, and

getZoom to create a side-by-side zoom.

Drag a ZoomifyViewer component onto

the stage, name it zoom1 and select the

zoom image you wish to display in that

window. Drag the ToolbarStandard onto

the stage and target zoom1. Drag anoth-

er ZoomifyViewer onto the stage, name

the instance zoom2 and select the image

that should display in that window. Select

the zoom2 instance, and attach the

ActionScript shown below.

onClipEvent (enterFrame) {

_root.zoom2.setView((_root.zoom1.getX(

)), (_root.zoom1.getY()),

(_root.zoom1.getZoom()));

_root.zoom2.updateView();

}

Test your movie and you’ll see that as

im
a

g
e

 I
V

im
a

g
e

 V

7 • 2004 MXDJ.COM • 17

you interact with the first zoom, the sec-

ond movie updates instantaneously.

• • •

So is that it? We’ve barely scratched

the surface. Check out these Web sites for

some inspiration:

• www.spaceimaging.com/gallery/

top10_2003/

• www.getty.edu/art/exhibitions/flem-

ish/home.html

• www.lewisandclarkexhibit.org/

• www.moma.org/kikismith/

• http://128.250.125.178/

• www.markfennell.com/panoramas/

• imagearchive.compmed.ucdavis.edu/

With Zoomify’s interaction with

panoramas and 3D objects as well as inte-

gration with Flash’s data grid components

and XML, developers and designers can

create new dimensions to more robust,

dynamic, and versatile applications.

Note: Zoomify is offering a free copy

of Zoomifyer for Flash v3.0 to MXDJ read-

ers. Simply e-mail president

@zoomify.com and mention MXDJ. No

registration required, no strings.

im
a

g
e

 V
I

im
a

g
e

 V
II

John is a currently Web

developer/designer with

Space Imaging. While

not drooling over amaz-

ing images of Earth or

teaching HTML and

Flash courses, he shov-

els snow and cuts wood

in the foothills near

Denver. jrwilliams

@spaceimaging.com

hat do you get when
you combine a few
hardcore design
enthusiasts with the
thousands of
impressive portfolios
and Web sites of artists
around the world? The
American Design
Awards (ADA).

the best in web design

ViVirtuosostuosos

Virtuosos

Established in February of 2000 in San

Diego, California, the ADA has two con-

tests for graphic and Web designers of all

experience levels – a monthly contest

and an annual contest. The founders of

the ADA were overwhelmed by the abun-

dance of talent they observed when

reviewing portfolios of prospective

employees and decided to find a way to

help these designers obtain the much-

needed recognition that would perhaps

help them in securing a career in the field

of visual arts.

Today, ADA has over 20,000 active

members and participants, from not only

the United States, but also Canada,

Europe, the Middle East, Asia, Australia,

and South America, who have found the

confidence and support to carry out their

dreams, with the backing of ADA.

The annual contest is open to all

kinds of entries, from Web design, logo

design, complete corporate identity

packages, marketing material, posters,

packaging art, illustrations, and more.

Any form of graphic or Web design has a

place in the contest.

The monthly contest, however, is all

about the Web, and is open only to actual

Web sites. Between 1,200 and 1,500 sites

are submitted each month and the top

5% are presented an award. There is no

cost to enter the monthly competition.

Flash and the ADA
It stands to reason that since the

monthly contest is open only to Web

sites, you’ll see a lot of Flash sites among

the highest scorers. ADA is not a “Flash

Web site” contest, but according to Kevin

Javid of ADA, more than half of the sites

scoring 90 or higher in the ADA competi-

tion use Flash to some extent. Although

the team at ADA does specifically look for

Flash in the design, according to Javid,

“using it in a tasteful and creative manner

certainly helps propel the score up by 5

to 10 points.”

For Daniel J. Ferkul of Ravalink Corp.

(January 2004 winner), Flash provided

the freedom to envision a site and create

it, without worrying about technology

limitations. “Flash allowed us to create a

site that was not static, but interactive...it

gave us the opportunity to inhibit limita-

tions in our vision and creation...time was

our only limitation.” In fact, Ravalink’s site

was done entirely in a few weeks by only

one of the talented creatives. Even with

an award-winning site, the creative minds

at Ravalink won’t stop there and are

already looking forward to their next

redesign. “As with anything we create,

halfway through we are saying, ‘Man, I

wish we could start over!’ Oh, the way the

creative mind works...we are never

happy!” says Ferkul.

A key feature that attracts these artists

to Flash is the integration of video in

Flash, which can be just as much fun for

the artist during the creative process as it

is for the audience. Just ask Lee Walters,

aka Lee Bones of lee.bones.com (January

2004 winner) about his first experience

with video and Flash. “I went to a fabric

store and purchased several yards of

green fabric. The color of the fabric was

very similar to the green fabric used for

special effects (green screens) in TV and

movies. I then hung the fabric up in my

apartment, set up the video camera and

lights, turned on the record player, and

performed every stupid dance move I

could think of. This was the first time I had

tried anything with video and Flash

together so it proved to be very fun!”

The use of Flash creates an extraordi-

nary experience for Web site visitors and

makes it pretty easy for designers and

developers to ensure that users will see

the sites as intended. “Since Flash is cross-

platform, as long as the user has the lat-

est Flash plug-in, we don’t have to worry

about browser compatibility issues like

alignment and fonts. This allows us to

explore new interface designs and lay-

outs,” says Amie LaRocque of Sumo

Creative Services (March 2004 winner).

And with the Flash player installed on

more than 97% of Internet-enabled desk-

tops, it’s a good bet that users will see the

site just as the artist envisioned.

From a development standpoint,

Flash is a winner as well. Quentin

Fountain of omegaDawn grafix (April

2004 winner) says, “We wanted to devel-

op a site that was extremely user friendly,

easy on the eyes, simple yet still exciting

to use. And from an internal develop-

ment standpoint, we wanted something

that would be easier to develop and

maintain than our previous site. With the

use of Flash and its ability to work with

PHP, XML, and MySQL, this was extremely

easy.” And it’s only going to get better

with the enhancements introduced in

Flash MX 2004. “We’re seeing a great deal

of sophisticated and intricate Flash ani-

mations as well as seemingly faster load-

ing pages. We are also finding a good

deal of functionality and customization

that allows for the user to interact with

an otherwise ordinary interface,” says

Javid.

Many of the artists featured here

chose Flash for similar reasons, but when

asked about their inspiration, they gave

answers as varied as the sites themselves,

ranging from their company’s branding,

to a new challenge, to their “favorite

things.”Thousands upon thousands of

artists are using the same technology, for

largely the same reasons, to create a very

unique representation of themselves and

their work. Says Walters, “I didn’t want to

make something that wasn’t me...because

I was selling me.”The images on the fol-

lowing pages here are accompained by

statements from the artists about what

inspired them, and the URL so that you

can, of course, get the full experience.

If they inspire you to enter your own

site, all the better. When asked to provide

some advice for newer designers, Javid

had this to say: “Balance! Balance is very

important not only in colors and layout,

but also in Flash. Sometimes less is more

and unless properly planned, ‘more’ can

lead to a Web site’s being too busy and

cluttered, unfriendly to the user, and to

most modern users, slow and cluttered.”

And Romain Gruner (December 2003

winner) puts it very simply: “To succeed

in this business we need to be better or

different. I choose the difference.”

To learn more about the ADA, please

visit www.americandesignawards.com.

7 • 2004

ADA Criteria

MXDJ.COM • 19

Each design piece is graded based on the degree of

creativity (30 points), design potential (40 points),

and originality of idea (30 points). Based on the final

grade received, the contestant will receive:

1. Platinum Award: This award is presented to the

top 5% of our designers, with a score of 90–100.

2. Gold Award: Presented to designers who score

between 80 and 89 on our judging score sheet.

3. Silver Award: Presented to designers who score

between 70 and 79 on our judging score sheet.

20 • MXDJ.COM 7 • 2004

www.filigrooves.com

I am a big retro fan in general. I really

appreciate the creative accomplish-

ments of the past. I think that today’s

designers, musicians, architects, etc.

have a lot to learn from the past

decades. I’m not talking about imitat-

ing, but letting yourself be inspired by

the works of others in order to create

something new.

© FILIGROOVES

www.romaingruner.com

My inspiration was to show magazines

(architecture, design, mode...). I wasn’t

inspired by other Web sites, only print.

© ROMAIN GRUNER

www.omegadawn.com

Our inspiration was the need for

change and the desire for an easily

maintained, database-driven Web site.

© OMEGADAWN GRAFIX, INC.

www.ravalink.com

Our muse is contemporary design that

consists of clean lines, the contrast of

black and white imagery, unique envi-

ronments, industrial spaces, and

everyday surroundings.

© RAVALINK CORP.

7 • 2004 MXDJ.COM • 21

www.leebones.com

I love antiques, cats, parades, film projectors, plastic buttons, abandoned buildings,

stupid dance moves, illustrations, and drawing. So when I thought about all of those

things put together, the end product was leebones.com. I didn’t want to make some-

thing that wasn’t me...because I was selling me.

© LEE WALTERS

www.flashlevel.com

We are inspired by technology,

motion pictures with amazing

special effects, nature, and of

course the challenge of a new

project.

© FLASHLEVEL, INC.

www.sumoxl.com

We based everything on

our branding. A lot of

the elements you see on

the Web site are also

found throughout our

collateral.

© SUMO

CREATIVE

SERVICES

22 • MXDJ.COM 7 • 2004

SV is a format that has been

around for a long time. It’s a

simple way to store multiple

rows with multiple columns and it can be

easily imported into a variety of com-

monly used desktop applications. This

article examines the use of CSV-format-

ted data in Flash. We will write a class in

ActionScript 2.0 to handle all of our CSV

functionality and then we will use this

class to populate the Macromedia v2

Data Grid Component.

Why Use a CSV File?
CSV is a very simple format. At its core

it is essentially a large string that has

rows separated by a delimiter and

columns within each row delimited by a

comma. Because of its use of rows and

columns, this data format is perfectly

suited for record sets, whereas an XML-

formatted record set is more complicat-

ed.

Another good reason to use CSV is

that it can be viewed by many common

desktop applications. Any spreadsheet

program, such as Microsoft Excel, can

view, modify, or create CSV files. Unlike

an XML-formatted record set, users can

open a CSV file and easily read the infor-

mation.

Like XML, CSV is data formatted with-

in a file. It’s not tied to any specific soft-

ware or platform and it doesn’t need a

server in order to deliver it to the client.

This makes CSV and XML files a very

portable way to handle data. You could

build a Web- based Flash application

using a CSV or XML file and then easily

use that same code to build a CD-

ROM–based application.

CSV will not always be the right solu-

tion for your project. XML is usually a

better solution for delivering data to the

client because of its versatility. Any time

your data is not formatted in a series of

rows and columns, CSV should be avoid-

ed. You should also refrain from using

the CSV format if you have multiple lev-

els of complex data types. For example, if

you have an array or a list in one of your

cells, you should probably use XML to

define your data. XML is better at sepa-

rating out different data types and han-

dling multiple levels of embedded data.

CSV should only be used for primitive

data types (String, Number, and Boolean)

that are housed in the row-and-column

format.

CSV Specifications
The first thing you’ll notice about a

CSV file is that it has rows and columns.

The rows are delimited by a line break, a

carriage return, or a combination of the

two. The columns within each row are

separated by a comma. Many times the

first row of the file is used to define the

column headers; we’ll talk more about

that when we begin parsing the data in

our custom class.

Many CSV files will use something

called a qualifier, the most common qual-

ifier being the double quote (“). This char-

acter is used to surround each column’s

data. Below you can see the difference

between a file with a qualifier and one

without a qualifier.

CSV data without a qualifier:

Field 1,Field 2,Field 3,Field 4

Field 5,Field 6,Field 7,Field 8

CSV data with a qualifier:

"Field 1","Field 2","Field 3","Field 4"

"Field 5","Field 6","Field 7","Field 8"

Building the CSV Class
Before we begin programming our

CSV class, we need to define exactly what

we need this class to do:

1. The class will need to load in an exter-

nal CSV file.

2. The class will need to parse the data

into a Flash object. The format we

want to get the CSV data into would

be an array of objects (or associative

arrays), with the object’s key being the

column header.

3. The parsing will need to be able to pull

the column headers from the first row

of the CSV; however, we will also want

to give the user the option to override

this feature by specifically defining the

columns in an array prior to parsing

the file.

4. We also need the parser to be able to

handle qualifiers. We will allow the

user to define the qualifier prior to

parsing the CSV data.

We’ll start our class by defining it. Our

class won’t be using the constructor for

anything, so we can leave that method

empty.

class CSV {

function CSV() {}

}

Next we need to define our class’s

parameters:

• csvData is a private array that will hold

the parsed CSV data.

• onLoad is a public method that the

user can overwrite to get a callback

when the data is loaded and parsed.

• columns is a public array that the user

can define prior to parsing the CSV

data to manually define the column

headers.

• qualifier is a public string that the user

can define prior to parsing the CSV

data. Qualifiers assist with more accu-

rate parsing. We will default this value

to an empty string.

private var csvData:Array;

data

CSV in Flash MX 2004

Make your classes easy and flexible
by danny patterson

c

7 • 2004 MXDJ.COM • 23

public var onLoad:Function;

public var columns:Array;

public var qualifier:String = '';

The first task that we need our class

to do is load data in from a file. We’ll

accomplish this by creating a load

method, which will simply take in the

CSV file’s path as its only parameter. The

load method will use the LoadVars class

to load the file into Flash, but we will

actually incorporate an undocumented

method within the LoadVars class, called

onData. This method works exactly like

the XML.onData method. It allows us to

get the raw file data without having it

parsed by the LoadVars class.

public function

load(csvPath:String):Void {

var csvLoad:LoadVars = new

LoadVars();

csvLoad._parent = this;

csvLoad.onData =

function(rawData:String) {

this._parent.onData(rawData);

}

csvLoad.load(csvPath);

}

Notice that in our LoadVars.onData

method we are calling a method within

our class, called onData. We will create that

method to handle the parsing of the CSV

data after the file has loaded. Once the

data is parsed it will pass it back to the user

through the onLoad method. We won’t

actually define the onLoad method. To

handle the load method callback, the user

will define this method. Users could also

override the onData method if they didn’t

want the data parsed right away.

public function

onData(rawData:String):Void {

csvData = parseCSV(rawData);

onLoad();

}

Next we’ll add the parser method. We’ll

make this method public so users can uti-

lize it without loading in the CSV data from

a file. The parser is the most complicated

part of this class – it is also the part of the

class where the most can go wrong.

Our parser method will take a raw

CSV string as its sole parameter and

return the parsed data as an array of

objects. The first two things our parser

method must do is determine the row

and column delimiters. We already know

that the row delimiter is a carriage return

(\r), a new line (\n), or both (\r\n). A quick

search of the string will help us deter-

mine what the actual row delimiter is.

The column delimiter is always a comma

in the CSV specification; however, we can

make our parsing more accurate by

adding the qualifier before and after the

delimiter. This new concatenated string

will be our column delimiter.

To begin parsing the CSV string we

will split the string into an array of its

rows. This will allow us to loop through

the rows and parse each row individually.

If the column’s parameter has not

been defined prior to running this parser

method, then we can assume the first

row in the CSV file holds the column

headings. We will populate the column’s

array from this row.

As we loop through the rows we will

split each row into an array of its

columns. If the row doesn’t have the

same number of columns as the columns

parameter, then we will skip that row. As

we loop through the columns within

each row we will place the data into an

c
o

d
e

 II

c
o

d
e

 I

24 • MXDJ.COM 7 • 2004

public function parseCSV(rawData:String):Array {

var ii:Number, columnArray:Array, rowObject:Object;

var returnArray:Array = new Array();

var rowDelimiter:String = (rawData.indexOf('\r\n') > -1) ?

'\r\n' : (rawData.indexOf('\r') > -1) ? '\r' : '\n';

var columnDelimiter:String = qualifier + ',' + qualifier;

var rowsArray:Array = rawData.split(rowDelimiter);

if(!columns.length) {

columns = removeQualifier(rowsArray.shift().toString(),

qualifier).split(columnDelimiter);

}

for(var i:Number = 0; i < rowsArray.length; i++) {

columnArray = removeQualifier(rowsArray[i].toString(),

qualifier).split(columnDelim);

if(columnArray.length == columns.length) {

rowObject = new Object();

for(ii = (columnArray.length - 1); ii >= 0; ii--) {

rowObject[columns[ii]] = columnArray[ii];

}

returnArray.push(rowObject);

}

}

return returnArray;

}

private function removeQualifier(originalString:String,

qualifier:String):String {

var modifiedString = originalString;

if(modifiedString.charAt(0) == qualifier) {

modifiedString = modifiedString.substring(1);

}

if(modifiedString.charAt(modifiedString.length - 1) ==

qualifier) {

modifiedString = modifiedString.substring(0,

(modifiedString.length - 1));

}

return modifiedString;

}

object using the column heading as the

key. We will then append this object to

the end of the array that we will be

returning (see Code I).

We also need to create a private

method called removeQualifier that sup-

ports the parser. This method will pull

out the qualifier at the beginning and

end of each row (see Code II).

In order to expose the private csvData

parameter, we will create a getter

method called data. This method will

simply return the parsed data to the user.

We do this to protect the csvData param-

eter from being set outside the class.

public function get data():Array {

return csvData;

}

Using the CSV Class with
the Data Grid Component

In this example we will use

Macromedia’s Data Grid Component to

display our CSV data. The data grid’s

dataProvider parameter accepts an array

of objects as a valid value, so we won’t

have to manually populate the grid. The

first thing we need to do is place an

instance of the data grid on the stage,

then give it an instance name of

dataGrid_mc. Then we will create a new

layer and name it Actions. We will put all

of our code in frame 1 of the Actions

layer. Make sure your CSV.as class file is in

the same folder as your FLA file.

In frame 1 of our Actions layer we will

begin writing our code, creating an

instance of the CSV class.

var csvLoad:CSV = new CSV();

Next we define our columns and qualifi-

er parameters before we parse the CSV file.

csvLoad.columns = new Array('Column

1', 'Column 2', 'Column 3');

csvLoad.qualifier = '"';

We then define our onLoad method,

where we populate the data grid with the

parsed CSV data. Finally, we call the load

method and send it the path to our CSV

file as an argument.

csvLoad.onLoad = function() {

dataGrid_mc.dataProvider = this.data;

}

csvLoad.load('sampleData.csv');

Conclusion
I hope this article gives you an idea of

how you can use CSV data within your

Flash application. But more important, I

hope it has given you a concrete example

of how you can build an ActionScript 2.0

class and how you can make your class

easy and flexible to the developers that

implement it. This CSV class may not be

the solution for your application, but the

principles of object-oriented program-

ming should be used in nearly every

application you build with Flash.

Note: Class code can be downloaded

from www.sys-con.com/mx/sourcec.cfm.

Danny Patterson

(www.DannyPatterson.com) is the senior

Flash engineer for POPstick

(www.POPstick.com) in Boston, and has

been developing for the Web since

1996. He is a Certified Advanced

ColdFusion MX, Flash MX, and Flash

MX 2004 Developer and works with the

Flash community as a member of Team

Macromedia. dpatterson@popstick.com

26 • MXDJ.COM 7 • 2004

reating games in Macromedia

Flash MX 2004 is one of the

most rewarding endeavors an

aspiring or seasoned programmer can

pursue. People could choose to develop

games using Flash MX 2004 for the sheer

enjoyment of seeing a creative idea come

to life, a specific project for a client, an

exercise to learn the details of program-

ming in Flash, or as a way to express

themselves artistically.

Before we look at the motivation, let’s

briefly look at the history of computer

games in general.

A Brief History of Games
Ever since the early days of

humankind, games have been an integral

part of our existence. Games allow us to

escape from reality, while at the same

time allow us to mimic reality in ways

that we might never be able to experi-

ence in real life. My perfect example is

when I ran around the fields as a child

playing soldiers in a war, or explored far-

off lands in my backyard.

Enter the computer. The computer allows

us to delve into worlds as never before. The

computer can be a portal into distant lands,

and can place us in the storylines of the

greatest science fiction and fantasy stories.

Before the electronic game era, we had

mechanical pinball machines. Pinball is

sometimes considered a precursor to mod-

ern video games, and moreover as the cata-

lyst that spawned the first general interest in

computer games. Looking back at the history

of games, it is amazing just how far they have

come in a relatively short period of time.

In 1958, Willy Higginbotham, a physi-

cist who’d worked on the Manhattan

Project in 1947, created the world’s first

electronic game. It was a basic tennis

game entitled Tennis for Two. In the 21st

century, the use of the third dimension in

games is almost a necessity. However,

over 50 years ago this

2-dimensional game

showed how elec-

tronics weren’t limit-

ed to performing

business and scien-

tific functions,

but could be used

for entertainment

as well. Although

Tennis for Two

felt like a com-

puter game, it

was really

hardwired

electronic cir-

cuitry set up

through an

oscilloscope, and did not

technically involve a computer.

The origins of the modern computer

game can be traced back to the early

days of computer science and the inven-

tion of the transistor. At this point, the

computer actually became somewhat

accessible to enough people to warrant

making the first games. These games

were very simple in their nature, and the

earliest example of a true computer

game, Spacewar! was created in 1961 to

run on the first PDP-1 computer at MIT.

This game consisted simply of a CRT

screen showing a few dots meant to rep-

resent spaceships, which were controlled

by primitive handmade joysticks, but

even then the potential for future game

advances became evident.

Ralph Baer, considered by many “The

Father of Video Games,”was at the forefront

of video game development in the 1960s. A

pioneer of the television itself, it was his

goal to merge both the computer game

and television to create the home console

video game. His earliest achievement was

the chase game, which consisted of two

objects, such as a fox and a hound, moving

along the screen. By

the late 1960s, Baer and his team of devel-

opers created a shoot-the-dots style of

game, and followed that with a table-tennis

game for two players. Ultimately, what Baer

developed was what he referred to as the

“Brown Box,”which was the original incar-

nation of the home-based console.

PlayStation 2 and Nintendo GameCube are

examples of today’s home-based consoles.

By the 1970s, a new but humble com-

puter game industry had emerged.

Games such as Pong and Space Invaders

filled the conversations in many homes.

One of the largest companies that

emerged from this revolution was Atari.

Behind it all was video game pioneer

Nolan Bushnell. Although other creators,

such as Baer, believed that the idea for

Pong was taken from earlier forms, it was

Atari that marketed the game first. Pong

to this day is still a landmark, a milestone

in the advancement of the gaming indus-

try. The 1970s and early 1980s also saw

the exponential rise of other games such

as Pac-Man and Frogger.

book excerpt

Escape from reality
by glen rhodes

c

Creating Games in Macromedia
Flash MX 2004

7 • 2004 MXDJ.COM • 27

The emergence of handheld games

(today’s equivalent being the Nintendo

Game Boy) unfortunately did not help the

already growing stigma that video games

were too violent or anti-social. This con-

cept originated in the 1970s and it is still a

controversial issue today. Nevertheless, all

these achievements paved the way for

advancement in the computer gaming

industry in the coming decade.

By the 1980s, arcade games were the

central hub of an entire cultural generation.

Children filled the arcades, spending most

of their pocket money so that they could

try the new Donkey Kong, Ms. Pac-Man, or

the improved version of Space Invaders

through game systems made by such man-

ufacturers as Galaga and Galaxian.

Perhaps the most important develop-

ment allowing for the rapid advance of

video games was the affordability of

home computers that first occurred in

the early 1980s. In 1982, the Commodore

64 was considered by many the comput-

er to have. Many games had become a

permanent fixture on the Commodore

64, for example The Olympics and

Mission Impossible. Eventually, the per-

sonal computer allowed for the everyday

person to learn and use computer pro-

gramming in their home, thus opening

the door to many an aspiring program-

mer to begin creating their own PC

games, and players playing at home

rather than solely at the arcades.

In the years that followed, games

have expanded into many areas of life,

and have spawned many genres from

works of fiction and nonfiction. Today,

many of the best games feature real-time

rendered 3D graphics with thousands of

polygons of detail, millions of colors,

lighting, reflection, and full surround

sound. In this book we’ll be looking at

several genres of games including the

top-down action game, the side-scroller,

the behind-the-player 3D, and others.

We’ll be pushing Flash to its limits.

Motivation
Whatever your reason for making

games, Flash provides the perfect medi-

um to do so. Its interface is very straight-

forward and easy to use, while its pro-

gramming language is robust and power-

ful, yet simple once you get the hang of it.

On top of all that, creating a game

with Flash allows you to deploy your

games to millions of people within min-

utes, giving game developers today more

opportunity to make a name for them-

selves and gain exposure than ever before.

Enjoyment
There’s no denying it; it’s fun to make

games. Once you’ve overcome the technical

hurdles, nothing is more satisfying than watch-

ing your creations and ideas come to life.

The Potential
One of the most critical roles that Flash

plays today is to provide people with the

ability to entertain an audience. In the

online world of mass marketing, this audi-

ence translates to advertising revenue.

When this happens in a medium such as

the Web, we inevitably see an emergence

of corporate clients who want to make use

of that technology. In the case of Flash MX

2004, games are a perfect way to generate

advertising revenue through the Web.

In the Words of
Craig Swann
Value of Gaming in Today’s Industry

Craig Swann, CEO of CRASH!MEDIA

(www.crashmedia.com), had these words to

28 • MXDJ.COM 7 • 2004

say on the importance of games in

Macromedia Flash in the modern online world.

“There should be no doubt about the

importance of gaming in the online com-

munity. In an industry in which content is

king and the medium is nearly as flexible

as thought itself there is almost no limit to

what content can be. Since the birth of the

World Wide Web, we have seen a shift in

people’s experiences. Before the Web, we

were living in a world in which we received

our content in a ‘lean-back’ form of com-

munication. Very little was expected of us.

So there we sat on our couches, in a vege-

tative state, leaning back and accepting

whatever was broadcast to us as informa-

tion; the only interaction being the clicking

of the remote. When the Web came along

everything changed. We entered the age

of ‘leaning forward.’We began leaning into

our screens, searching for information. We

were slowly gaining some control, and

more importantly, interest in getting

involved with data, information, images,

text, videos, and of course games.

“I was lucky enough to have been born

alongside the birth of mainstream video

games in the early 80’s. Pac-Man, Donkey

Kong, Frogger, Space Invaders. I was in the

arcade popping quarters into the

machines on my tippy-toes when they first

came out. I’ve seen these classic games

transformed over the decades into games

that are now very close to real-life multi-

player simulations. It’s incredible, and the

one thing that has continued to advance is

the interactivity of the games – the feeling

of the games and how they are played.

“Games take us into a world, the world

of the developer. Through the clever use

of motion, sound, music, animation, and

most importantly interactivity, entire

worlds are created. Games take us to

another place. Our minds focus on the

environment of the game – everything

else fades out in our perceptions. It really

is amazing how mentally involved and

focused we become when we play games.

This is one of the main reasons games can

play an important role in online develop-

ment of interactive brands. Games give

something. As developers, any time we

create something that goes online we are

vying for a piece of a person’s life. Think

about that: their time; their existence. Yet

games are something that most of us are

guilty of spending hours and hours play-

ing. A good word for it is ‘escapism.’

“Without a fancy survey to back me up,

and going only on my personal experience

of eight years on the Web as both a devel-

oper and surfer, I would have to say that as

far as entertainment on the Web goes,

games take the cake. In my experience,

online games are the number one overall

activity for people around the world look-

ing for fun on the Web – clean fun that is!

This is largely due to the very existence of

Macromedia Flash. People have been pro-

ducing the most amazing variety of games

using Flash for years now. Flash, due to its

ubiquitous nature, has evolved rapidly to

become the number one platform for

online game development.”

Advantages of Flash as a
Platform for Games

“Macromedia Flash is an excellent tool

for creating games due to several factors.

First, its scripting environment is sophisti-

cated enough to enable real-life physics

and motion element to games. Secondly,

being a vector-based application allows

for the creation of tiny graphic elements.

This means that sophisticated interactive

games can be created and experienced

with a very little effect on bandwidth.

Whether on an ultra-fast optical T3 con-

nection or on a 28.8 dial-up modem,

Flash games, as long as they are created

properly, can provide the same experi-

ences.

One of the unique aspects of games is

the fact that they take us into a world, a

world where, as developers, we create

the rules. We create the characters and

the environment. When you have the

ability to code an environment with its

own sets of natural laws and physics, you

truly do create unique interactive experi-

ences. The rich integration of sound and

music games allow you to go even fur-

ther and create strong experiences that

tie in all of the senses, as they are tightly

focused on gameplay.

This sort of intense user focus can be

channeled to help strengthen a brand or

concept to to the user. Unlike the aver-

age visiting times of other types of Web

sites, users will often spend as much as

an hour playing games. This unusual

length of time on an Internet property

offers many ways to communicate to the

user, whether it is through the game con-

cept itself, or through interstitials and

other ads, and marketing.

The Internet by its very nature is viral.

We tend to hear about things and check

them out. The ease of communication on

the Internet allows us to easily pass along

ideas as well as share things that we find

in this seemingly never-ending universe.

Games are an amazing way to get people

to talk about something and participate.

Contesting for high-scores has proven to

be an excellent way to generate traffic to

a site. What better way is there to win

something than by playing fun games!

With Flash, we don’t have to stop at

single-player games either! There are many

ways now possible including XML sockets

and the Flash Communication Server to

facilitate real-time multiplayer games. This

is where things start to get really interest-

ing! Today we can create games and envi-

ronments that can involve any number of

people based on the concept of the game.

From our experience, we had the opportu-

nity to create a multiplayer game as part of

contesting for a large beverage distributor.

The game allowed people from around the

world to play and battle each other head

to head in real-time. The ability to experi-

ence an event with someone halfway

across the world is something new to us,

something that is continuing to grow and

flourish. This is the direction we are head-

ed. To communicate, collaborate and most

importantly play with each other. We are

living in fabulous times – where the power

is truly in our hands to create the very

things we envision. It blows my mind to

imagine what sort of ways we’ll be gaming

and sharing our lives with people through

the amazing ways we can create games

and experiences with Macromedia Flash

MX 2004.”

Summary
We’ve seen that games have a rich his-

tory, and as young as the games industry

is, it’s a large and growing one. The propa-

gation of the Flash 7 player across the Net

allows us to take these games to a new

level, bringing them instantly to an audi-

ence of hundreds of millions, creating lim-

itless opportunity for creative expression

and commercial success.

Reference
• DeMaria, Rusel, and Wilson, Johnny

Lee. High Score! The Illustrated History of

Electronic Games. McGraw-Hill Osborne

Media. (2002).

Excerpted from

Creating Games in

Macromedia Flash MX

2004, Charles River

Media.

Glen Rhodes

(Toronto, Ontario) has

been developing

games professionally

for 10 years. He is

CTO of

CRASH!MEDIA. Glen

has developed games

such as Catch the

Train for Nike and

Domino Dementia for

www.shockwave.com.

He has also written

and coauthored a

number of successful

titles on Flash MX.

30 • MXDJ.COM 7 • 2004

7 • 2004 MXDJ.COM • 31

There are

many ways to

create the illu-

sion of three-

dimensional objects

with the multitude of

drawing tools and func-

tions within FreeHand MX.

Blends, gradient fills, vector

and bitmap effects, and Xtras

will be covered in Part 2 of this series.

In this installment, the new Extrude tool

will be explored and explained. It is both

simple and complex to operate, depend-

ing on your level of experience with the

tool, and the effect you are attempting to

achieve. If you want “Superman” style text

zooms, then the Extrude tool will fix you

up in seconds. However, if you want hol-

low objects, donuts, spirals, and high

degrees of rendering, then your work will

be a little tougher to complete. But that’s

not to say it’s hard – it will just take a bit

more time. The hot dog illustration in

Image I has six extrusions and took about

three hours to draw. Even with 1.5GB of

RAM, a lot of time is spent waiting for the

program to complete its calculations and

redraw the screen.

The Extrude Tool
Initial use of the Extrude tool is pretty

simple: click the tool on a vector object

and drag the cursor to create a vanishing

point. Unfortunately, you’ll

rarely be finished that quickly, so a

few pointers might be welcome. You

can see the Extrude tools in Image II. All

of these commands are found by choos-

ing Extrude from the Modify menu.

• Release Extrude: Clicking this icon or

choosing it from the menu will convert

the extruded artwork into the poly-

gons that make up the shape. This

could be as few as four polygons for a

simple cube, or many thousands of

polygons in a complicated extrusion.

The artwork cannot be modified in any

way with the Extrude tool at this point

as it is a simple vector graphic.

• Remove Extrude: This option will take

away any extruded effects and return

the graphic to its original shape.

• Reset Extrude: After you’ve manipulat-

ed an extrusion in certain ways, you

cannot apply changes without reset-

ting the extrusion, which takes you

back to the original extrusion. In

essence it’s a lot of Undos in a single

click. After using Reset Extrude and

making your changes (usually color),

you must redo any rotation and scale

adjustments you had previously done.

The bright side is that you have an idea

of what you want it to look like, so it

takes less time than originally.

• Share Vanishing Points: With multiple

objects in a drawing, there are times

you wish to have them all “pointing” to

the same spot on the horizon. To use

this option, select all the extruded

objects necessary, and click the Share

Vanishing Points option. All the

objects will then show their vanishing

points. The next mouse click will apply

a single vanishing point that you can

drag to any location.

• Rotate Extrude: If you have a lot of

extra time on your hands, you can click

this icon or choose it from the menu. It

serves the same purpose as double-

clicking an extruded object: it displays

the rotation circle. Different strokes for

different folks, I guess.

I find it easiest to have all the

icons/buttons for extrusion actions

installed in my main toolbar to save time.

If you’ve just played with the Extrude

tool a couple of times, it may seem

daunting to work with. But it’s actually

quite easy to master. As with other things

in life, there are rules to remember, how-

ever. For one, in order to create an object

in 3D, FreeHand converts the object into

hundreds and thousands of tiny poly-

gons – usually triangles – that create

facets (or faucets if you’re drawing

plumbing fixtures) that give the illusion

of three dimensions. Therefore, the high-

er the degree of rendering you ask

FreeHand to do, the more polygons that

will be created, and coincidentally, the

more RAM and time required to manipu-

late the object. The key here is to work at

low levels of rendering, or “steps” as it’s

called in the Object panel, until you have

completed the sizing, positioning, light-

ing, and other factors. Then, when you’re

ready to print or commit to a different

format, increase the number of steps in

order to smooth out the facets.

Another rule is that the Extrude tool

works only on vector objects and text;

you cannot extrude a bitmap. Well, you

can trace the bitmap and extrude the

various objects, but I can’t imagine why

you would (the multitude of points in a

32 • MXDJ.COM 7 • 2004

tracing would take up so many computer

resources that it would be impossible to

get any work done).

More Rules
You can’t simply change the color of

an extruded object (but you can cheat –

see Color Switcheroo). If you have rotated

and changed the size of an object, you

will be prompted to Reset Extrude, which

brings you back to the first step in your

extrusion. At that time, you must choose

Modify > Extrude > Reset Extrude; dou-

ble-click Contents in the Object panel to

Subselect the object as a group; then

double-click Contents once more to actu-

ally change fill or stroke color. Then you

redo your rotation and size changing

with the new colors in place. You must

have the Extrude tool active to change

any 3D attributes. As an added bonus,

any change you make to the artwork (live

on the page with the Extrude tool) can

be accomplished by entering numbers in

fields in the Object panel. That means

you can maintain consistency between

extruded objects by entering the same

numbers for X, Y, and Z-axes and other

attributes such as lighting arrangements.

You probably know that Adobe

Illustrator’s extrusion function requires

you to open a dialog box to change

attributes, then close the window to see

the result. If it’s not to your liking, you

must return to the dialog box. FreeHand

is much more user-friendly in that

respect. Last, if you have multiple objects

that you wish to share a common vanish-

ing point, it’s a matter of selecting the

objects and choosing Modify > Extrude >

Share Vanishing Points.

Oh, best of all, you can extrude live

text; just click the extruded text with the

Text tool. The text editor will open, and

you can make any changes you wish,

including changes in color on an individ-

ual-letter level.

Using the Extrude Tool
Before applying an extrusion, choose

the base color you want for the object.

Since FreeHand adds shadow and high-

light colors, it’s best to select a color with

a middle value – not too dark or light.

Click the shape or text with the

Extrude tool, dragging in the direction of

your vanishing point (you are, in fact,

dragging the vanishing point). Seconds

later you have a 3D extrusion.

The most common extrusion you’ll

probably make will be a text object. In

Image III, “POW!” was extruded in the

with default settings, resulting in a solid

mass receding to the horizon. But to

show that extrusions don’t have to be

simple, the path that is shown was

applied as a profile to give the text a box-

ing glove appearance. A full description

of profiles appears further in these pages.

For the record, when the extrusion was

complete, it was cloned and the extru-

sion released. Then all the components of

the extrusion were deleted, leaving only

the rotated text which was colored and

modified.

I must apologize for throwing so

many features at you in one illustration,

but the magic of the Extrusion tool is the

ability to combine various attributes. By

reading through to the end, you’ll see

that everything will have been covered in

good detail. With that in mind, the top of

Image IV shows the extrusion profile

shape drawn to give my extrusion a jelly

jar shape (notice that the shape is nearly

closed: the extrusion will create a shell

image II

image III

image I

7 • 2004 MXDJ.COM • 33

around the object that is extruded).

Immediately beneath the path, you can

see the circle that was extruded. At the

bottom, the extrusion was double-

clicked with the Extrude tool to bring up

the Rotation Circle. Then the tool was

clicked inside the bottom of the Rotation

Circle and dragged upward to rotate the

extrusion vertically. Please note that the

object you choose to extrude will be the

core of the extrusion. That is to say that

all the extrusion work will be done

around the object. Small objects result in

skinny extrusions; large objects gain a

wider extrusion. You may have to try two

or three sized objects to get the appear-

ance you’re looking for.

Clicking and dragging the Extrude

tool inside the Rotation Circle rotates the

object around its X- and Y-axes. Rotation

around the Z-axis is achieved by clicking

and dragging the cursor outside the

Rotation Circle. The triangular point on

the circle is a Z-axis reference marker.

When the object is rotated to your

satisfaction, double-click the Extrude tool

on the desktop to deselect the object.

Then click the object once with the

Extrude tool. The object center point is

indicated by the “X” at one end of the

dashed Z-axis line. At the other end is a

circle that controls the depth of the

extrusion. Click and drag this circle to

lengthen or shorten the object. The van-

ishing point is marked by a cluster of dia-

monds. A rectangular box will appear

when the object is selected with the

Extrude tool, showing the actual perspec-

tive. Sometimes this box will be partially

off the object, but it doesn’t affect your

editing or the final result.

It’s important to remember that, yes,

you can skew, rotate, scale, and mirror an

extruded object, but once you do so, you

can no longer use the extrusion tool for

editing the object without using Reset

Extrude and starting over.

Using a Profile
Simple extruded circles, squares, and

text can be pretty boring. FreeHand MX

allows you to create a profile for an extru-

sion, and the best way to explain the tool

really requires figures to do the heavy lift-

ing. Image VI shows a circle, a square, and

a compound path that have been extrud-

ed and share the same vanishing point.

Each example has the same profile, but a

different approach: either bevel or static,

and a static with a twist applied.

I hate to admit it, but the Extrusion

tool does not create a true 3D extrusion

on the first click, due to the math involved

in the extrusion process. There, I’ve said it.

image VI

image IV image V

im
a

g
e

V
III

im
a

g
e

 IX
im

a
g

e
 X

34 • MXDJ.COM 7 • 2004

Look particularly at the bottom of Image

V – the length of the extrusion accents

the fact that you’re looking at the objects

all on the same plane, without perspec-

tive. A true 3D extrusion would rotate and

skew the original object in conjunction

with the extrusion’s vanishing points.

Instead, the object remains at its original

orthographic placement and shape,

square to the page. Once you rotate the

extrusion (explained below), distortion

occurs, but the original object is not dis-

torted correctly. The solution to the situa-

tion is extremely simple and results in a

correctly distorted object: when you first

apply the Extrude tool, click as near the

center of the object as you can, and do

not drag out a vanishing point. The van-

ishing point can be manipulated later.

In the extrusion shown in Image VII, the

path is modified from the path in Image IV,

and is more open, which will create a solid

extrusion. You can see how the bevel pro-

file wraps around a straight-line extrusion

of the object. A static profile, however, acts

as a spine to the extrusion. An object with

a static profile will maintain a consistent

shape from one end to the other, but fol-

low the spine of the profile. The bevel pro-

file in this image is a good example of how

the object size changes the appearance of

the extrusion – compare to virtually the

same profile in Image V.

More than likely, you’ve noticed that

most of the extrusion examples so

far have a rough, faceted look to

them. They were done with mini-

mal rendering resources – the

default of 5 in Lighting and 5 in

Profile. It bears repeating and

can’t be overstated that extruding

objects is extremely RAM inten-

sive, so you must be patient and

do any profiles, rotations, twists,

and other adjustments before

bumping up the number of Steps

in either the Profile or Lighting

windows. The simple act of mov-

ing an extruded object to a differ-

ent location on the page can

cause a wait of several minutes –

if not an unwelcome “Could not

complete your request – not

enough memory” message. The

boxing glove-type extrusion in

Image II has nearly 28,000 objects

with 5 steps. Increasing the steps

to 10 would require 56,000

objects, and the program comes to a

halt.

Edits Made in the
Object Panel

If you’re like most people, you’ll want

to change the length of the extrusion, its

orientation, vanishing point placement

and rotation live on the page. Although it

can be done in the Object panel (for con-

sistency with other objects, for instance),

it’s much more satisfying and less frus-

trating to work directly with the object.

However, there are many options to con-

sider in the Object panel. The screenshot

in Image VIII shows the available options.

Entering numbers in any of these fields

will affect the appearance of the object,

and will take the same amount of time to

render.

Lighting Options
You have a choice of surface render-

ing approaches, the number of steps

involved in the rendering, and how much

ambient light surrounds the object.

Beyond that, you can control the position

and brightness of two light sources.

FreeHand is not a 3D rendering program,

but supplies several lighting choices as

seen in Image IX, reached by clicking the

light source icon in the Object panel that

appears when an extruded object is

selected.

Surfaces
Surface choices are shown in Image X,

and bear a little explanation.

image VII

36 • MXDJ.COM 7 • 2004

Image XI shows the effects of the

different surfaces. The Flat surface

option creates an extrusion, but does

not give a modeled light. As it’s named,

the object is flat, but the polygons that

make up the extrusion are stroked with

a lightened version of the fill color (this

happens to be a bug). A stroke on the

original object will separate the face of

the object from the extrusion. The

usual option is the Shaded surface, and

here’s where the lights come into play.

Wireframe creates a skeletal outline fol-

lowing the profile of the extruded

object; the paths that make it up are 1-

point lines with the color of the

object’s fill. A Mesh surface shows the

same wire outline, with the addition of

outlines of all the triangular polygons

that make up the object. Both

Wireframe and Mesh show all sides of

the object, as if it is hollow. Last, there’s

the Hidden Mesh surface. This surface

is different than the others in that you

must start with a stroked path, and the

end result is that the rendering hides

all the construction lines that aren’t in

view. Good to use when you don’t

want to see the dark side of the moon.

The Wireframe and both Mesh surface

treatments are super if you’re creating

a techie background and

need a blueprint effect.

Lights
If you choose to have a

shaded surface, then you’ll

find the various light

sources by clicking their

drop-down menus shown in

Image XII. Their locations

are simplistic, but they get

the job done.

Profiles
The workhorse of the

Extrude tool lies in the appli-

cation and use of profiles. As

seen earlier, a profile can sur-

round an object, or act as a

spine. Image XIII shows how

to create various objects that

seem challenging at first. In all

the examples, the object to be

extruded is on the left, fol-

lowed by the profile and the

resulting extrusion. The extru-

sions have been rotated to

show off their best sides, and don’t share

a common vanishing point.

To create a sphere, start with a very

small ellipse. Imagine the area of a ball

that touches the table – that’s how small

an area you want, or you’ll end up with a

flat spot. The profile is a semicircle, ori-

ented as shown, or rotated 180-degrees.

If you rotate it 90-degrees as shown in

the next example, the original object lies

at the bottom of the funnel shape (out of

sight), with the extrusion rising up and

traveling outward from the center.

A torus or donut is tougher. Create a

compound path: draw a circle; clone it;

reduce the size of the clone; and center

the two circles upon each other. Use

Modify > Join to make the compound

path (or you can use the Punch Xtra).

Draw another circle that you want to be

the thickness of the donut, and Ungroup

it. Select the top point in the circle and

choose Modify > Split. Then rotate the cir-

cle 45-degrees counterclockwise, and

copy it to the Clipboard. Now select the

Extrude tool and click the compound

path; in the Object panel, click on the

image XII

image XI

image XIII

7 • 2004 MXDJ.COM • 37

Profile button and select Bevel from the

drop-down menu. When the Paste In but-

ton is active, click it, and the default

straight line in the preview box will be

replaced with your broken circle. Wait a

minute or two and your donut will appear.

If you see a space station or Saturn-look-

ing object, rotate the original profile, copy

it, and paste it into the extrude panel.

The bottom two examples in Image

XIII use the Twist function. The difference

is that in the upper one, a U-shaped path

containing only four points is used as the

profile. The Twist entry is 720 degrees, cre-

ating two complete revolutions. A U-

shape is necessary to provide a center

point from which the spiral will revolve.

So, with the simple profile, a path is creat-

ed of straight lines rotating and stopping

at 90-degree intervals. The next example

has been rotated end-on. To create a

smooth spiral or spring shape as shown

on the bottom, use the Add Points Xtra

several times on the long stretch of the

profile. I split the end paths off first and

joined them later. Now the profile rotates

extremely smoothly. To get rid of the end

paths as in the far-right examples, you will

have to get the object oriented exactly as

you want, then use the Release Extrude

function to convert the spiral into a group

of polygons. Use the Lasso tool to select

the end objects and then delete them.

Both the Static profile and the Twist

option are unique to FreeHand in 2D draw-

ing programs. In Image XIV, two squares

and two circles arranged in a square were

grouped, then extruded. A 360-degree

twist was applied. If you ever have to draw

the staff of Aesculapius (the two inter-

twined snakes on the winged staff symbol

used by doctors), this is the technique.

And, in the “because I can” depart-

ment, I took that same extrusion with a

twist angle of 720-degrees, and applied a

circular static profile, resulting in the snarl

of rubber bands shown in Image XV.

Color Switcheroo
Okay, you’ve got the extrusion exactly

where you want it, the profile is perfect,

even the lighting and profile steps are

just right. Then the customer says they

want more of an robin’s-eggshell blue

instead of this off-white-blue color that

was approved earlier – now what? Well, if

you follow the generalizations of the pro-

gram, you’ll select the extrusion and

attempt to change colors using all the

various methods you know. All to no avail

– you’ll be greeted with a message telling

you to use Reset Extrude. “That’s just per-

fect! Back to square one,” you say, pulling

your hair out. Well, if you use this simple

method, you’ll be flying high in no time.

Simply use a named color when you

select your fill color. Doing so allows you

to create a new color and drag it on top

of the named color in the Swatches

panel. Just a few minutes later, the extru-

sion will change color, and you’ll still have

most of the hair on your head. In case

you’re not up on named colors, create a

color in the Mixer or Tints panels and click

the “Add to Swatches” button next to the

color well, or drag a swatch from the

color well and drop it on the Swatches

panel. You’ll be prompted to name the

color. Choosing a new color and drop-

ping a swatch of it directly onto the color

square in the Swatches panel will change

the color of every object that has the

named color, so be specific when you

name the color for your extrusion.
Adobe Illustrator has two features that I’d

love to have in FreeHand: plastic rendering and

image mapping. Since we don’t have either,

you must create workarounds. Simple render-

ing techniques using gradient fills can give you

a highly polished surface appearance. For flat-

sided image mapping, it’s easy enough to

apply an Envelope to the art you want

mapped and adjust it to fit. Beyond those fea-

tures, I’ll take FreeHand MX’s Extrude tool any

day, considering the static profile, mesh model-

ing, and the fact that since the extrusion is a

top-level object we make live adjustments for

length, rotation, and attitude instead of going

back and forth through a dialog box.

Acknowledgments
Many thanks to Peter Moody, David

Spells, and other engineers at

Macromedia for the technical support

they provide.

Illustrator, designer, author, and Team

Macromedia member Ron Rockwell

lives and works in the Pocono Mountains

of Pennsylvania. He is the author of

FreeHand 10 f/x & Design, and is about

to introduce a FreeHand MX course. He

has Web sites at www.nidus-corp.com

and www.brainstormer.org. Contact him

at guru@brainstormer.org with questions

or article requests.

image XV

image XIV

An OO

Approach to ‘War’

 With the advent of
ColdFusion components

(CFCs), introduced in
ColdFusion MX version 6.0

and greatly improved in
version 6.1, ColdFusion MX
allows CF programmers to

enter the mainstream of
object-oriented (OO)

programming. With the
overwhelming success of

the J2EE and .NET
platforms, OO has become
the dominant paradigm for

building commercial
software and gaining a

thorough working
knowledge of it is essential
to any programmer’s long-

term career success. In
this article, we’ll build a

simple version of the child’s
card game “War” –

hopefully learning
something about OO

design and implementation
along the way.

by hal helms

OOOOOOOOOOOO
38 • MXDJ.COM 7 • 2004

OOOOOOOOOO
Here’s a refresher on the game: two

players each receive a card. The cards are

then compared to see which has a

greater value (the ordering of suits is

ignored for this game). The player with

the higher card is the winner and the

game continues until the deck of cards

runs out. As simple as the game is, it does

provide some insight into object orienta-

tion as implemented in CFCs. First,

though, we need to understand what OO

is and how it requires a shift in thinking.

As most ColdFusion programmers

write code, data and program logic are

separate. Data is stored in databases

while program logic is fit into CFML files.

When we need to read or modify a piece

of data, we commonly extract it from its

database home, use it, and then return it

(see Image I).

OO takes a different approach: both

data and logic are combined into a single

software “packet” known as a class. Data

is stored in instance variables and logic is

stored in methods.

In the address example I’ve used, we

would build an Address class. What sort

of data would an Address class have? A

minimal representation of an Address

class would probably include street, city,

state, and zip. Because the Address class

isn’t expected to do much, its methods

might be restricted to “getters” and “set-

ters” for the instance variables, yielding

methods like getStreet and setStreet.

These methods (and similar ones for the

other instance variables)

simply provide access

to the data that is

kept private.

In Cold-

Fusion MX,

classes have a

special name:

ColdFusion

components

(or CFCs, for

short). Code I

shows one CFC

implementa-

tion for an

Address type.

A class is a

static represen-

tation of some-

thing in the

real world. But

we don’t want

a static

address; we

want an actual

address. Our

class definition

acts as a sort of

blueprint or cookie

cutter, from which individual

objects can be created – and it’s objects

we’re counting on to do the work in an

object oriented application.

Creating an object from a class is

quite simple:

<cfset myAddress = CreateObject(‘com-

ponent’, ‘Address’) />

That’s it. We now have an object

referred to by the name, myAddress. Our

object is pretty barren at present. All it

has for instance variables are empty

strings. We’ll give the instance variables

more meaningful data, but first, we

need to understand a very important

OO idea – perhaps the most important

idea.

Encapsulation
Encapsulation is a principle that urges

us to keep our data private to the outside

world, allowing access to it only through

methods. With CFCs, we achieve this by

placing the instance variables in a private

scope (private to the object itself) known

as the variables scope. From outside the

object, those variables don’t seem to

exist. We can try to access them – per-

haps using dot notation:

<cfoutput>

#myAddress.street#

</cfoutput>

But ColdFusion will tell us that no

such variables could be found. That’s

right – since they’re private, the only way

to access these is through the getter and

setter methods we created. Here’s how

we can get real data into our object:

<cfset myAddress.setStreet(‘4034

Whetstone Ct’) />

<cfset myAddress.setCity(‘Marietta’)

/>

<cfset myAddress.setState(‘GA’) />

<cfset myAddress.setZip(‘30062’) />

Our setters work to set values for

instance variables; our getters provide

the information stored in those variables.

People often ask me if it’s hot in

#myAddress.getState()#.

Once we have an object, we can get it

to do some useful work. We do so by send-

ing the object a message. We saw a simple

example of this with our getters and set-

ters. The methods defined by an object

define the messages that can be sent to

that object and regardless of how complex

the object may be, we always use this mes-

sage-sending to accomplish things.

In addition to encapsulation, OO is

upheld by two other chief tenets: poly-

7 • 2004 MXDJ.COM • 39

image II

im
a

g
e

 I

40 • MXDJ.COM 7 • 2004

morphism and inheritance. With CFCs

especially, these two are intimately relat-

ed. The word polymorphism is an unhap-

py transplant from its native Greek,

where it meant “many forms.” As applied

to OO, it might be better translated

“much confusion.” Polymorphism is noto-

riously hard to define – and that’s too

bad, because it’s a powerful tool in the

hands of accomplished programmers.

Still, let’s see if we can’t discover what

polymorphism is.

I’ll start by asking a simple question:

Who are you? Well, that depends. You

may be a child to some, a parent to oth-

ers, an employee to your company, a

spouse to your mate, a friend to your

comrades – the list is probably a very

long one. What’s important for our under-

standing of polymorphism is that you

belong to many different groups. Here,

we’ve listed Child, Parent, Employee,

Spouse, and Friend.

OO languages allow us to create a

software model of the world, or at least

those parts of it that are under considera-

tion. Part of the language’s job is to make

sure that conversations between objects

(via message sending) is safe – that is, the

object that is being sent a message has a

method that correlates with the message

sent. The way that class-based OO lan-

guages (Java, C#, CFCs) provide for this is

through type checking. The logic behind

this is as old as Aristotle, who laid out the

basic law of the syllogism like this:

1. Socrates is a man.

2. All men are mortal.

3. Socrates is mortal.

If the first two premises are granted,

the conclusion is inescapable. Likewise,

OO languages implement their own ver-

sion of syllogistic logic:

1. You are a parent.

2. All parents worry.

3. You worry.

Put in slightly more techie terms, I could

say that since you’re of type Parent, you can

respond to the worry() message. But par-

ents are not all the same. Some are

NaturalParents. Others are AdoptiveParents.

Still others are SpiritualParents. No matter;

they all know all too well how to respond

to the worry() message. Again, translating

this into TechTalk, we might draw a UML

class diagram that looks something like this

Image II.

Now we get to the polymorphic part:

let’s say that we have a Counselor type,

who specializes in helping parents deal

with worry. The Counselor has a soothe()

method.

<cffunction name="soothe" access="pub-

lic" returntype="void" output="false">

<cfargument name="parent" type="???"

required="true" />

<!--- secret parent-soothing method

goes here --->

</cffunction>

We specified an argument named

parent, but of what type? We certainly

don’t want to have methods for each

type – sootheNaturalParent(),

sootheAdoptiveParent(), and

sootheSpiritualParent(). That’s just a bad

solution. Not only is it ugly, it’s fragile. If

we add a new kind of parent in response

to changing requirements, we’re going to

have to find every method that accepts

parent types and add new methods to

correspond with the new parent type.

Luckily, polymorphism comes to the

rescue: we can specify that the argument

type is simply Parent. At run time, we can

pass a Parent type, or – this is the impor-

tant part – we can also pass any Parent

subtype. The generalized Parent type pro-

vides a type specification for which any

subtypes will be considered valid. So we

don’t need different methods for each type

of parent. We can specify that the type is

Parent and our code will run correctly. If we

add another Parent subtype later, none of

the code that accepts type, Parent, will

break. This new Parent subtype can safely

be passed to the existing methods.

There’s another aspect to polymor-

phism. Image III is another UML diagram

7 • 2004 MXDJ.COM • 41

showing a polymorphic relationship.

Now, in a Boss class, we might have a

method called delegateWork() that

accepts an Employee and calls the

Employee’s work() method. The code

might look like this:

<cffunction name="delegateWork"

access="public" returntype="void" out-

put="false">

<cfargument name="employee"

type="Employee" required="true" />

<cfset arguments.employee.work() />

</cffunction>

As each Employee is sent to the Boss’s

delegateWork() method, the Boss tells

the Employee to start working.

What happens? The PayrollClerk starts

paying people; the Engineer starts

designing things; and the Programmer

starts writing code. Even though a gener-

ic Employee is accepted as the type of

delegateWork method, the actual work

method called on that Employee will be

that one the corresponds with their more

specific type. This prevents the Boss from

needing a series of methods such as

delegateWorkToPayrollClerk(),

delegateWorkToEngineer – and so on.

Polymorphism (also known as sub-

type polymorphism) is a powerful tool to

be used in building scalable and main-

tainable code. To make use of polymor-

phism in our OO code, we need to think

in terms of general types, for which indi-

vidual subtypes can later be substituted.

This provides flexibility to our designs.

With CFCs, subtype polymorphism

occurs by means of inheritance – where-

by one class is a specialized type of

another, existing class. A SportsCar is a

specialized type of a Car, for example. To

reflect this relationship in code, the sub-

class (SportsCar, in this example) declares

that it extends a base class:

<cfcomponent displayname=”SportsCar”

extends=”Car”…>

A class that extends another class has

access to the base class’s properties and

methods, as though they were its own.

Since Car will already have a start() and

stop() method, for example, SportsCar

doesn’t need to define these itself –

SportsCar inherits them from Car. (If a

subclass wishes to implement a method

differently from its base class, it may sim-

ply redefine the method in its own code.

At run time, the overridden method, as

it’s called, will be invoked instead of the

base class’s method.)

Back to the Game
With that quick primer on object ori-

entation done, let’s return to our War

card game. The game uses a standard set

of poker cards. I began by modeling a

single card in a CFC called Card. A Card

needs to do only a few things. It must be

able to return a string representation of

its value (“Jack”, for example), a numeric

representation of its value (11 in the case

of Jack) and it must be able to determine

if it outranks another card. The public

methods for Card are therefore

getStringValue(): string ,

getNumericValue(): numeric, and

compareTo(Card): numeric. (The syntax

for expressing method signatures as

they’re called is this: any arguments

accepted by the method are shown in

parentheses; if the method returns any-

thing, the return type is specified after

the colon. Parsing the

“compareTo(Card):numeric” method sig-

nature would tell us that the compareTo()

method accepts a variable of type Card,

and returns a value of type numeric.)

At about this point in the process, I

remembered that different games use dif-

ferent card types, differing chiefly in the

numeric value assigned to cards. To build

in for this flexibility, should the need later

arise, I created a specific PokerCard class

that extends the Card CFC. To reflect the

fact that different card types might have

different numeric representations for the

same card (an Ace might be counted as 1

or 11, for example), I decided that all spe-

cific Card subtypes should determine the

numeric values for each card.

I decided to call this needed method

initializeValueMap(). Since it would be

specific to each subclass of Card, I want-

ed a way to ensure that all subclasses

would implement the initializeValueMap()

method. In languages such as Java and

C#, I could mark the method in Card as

abstract. The compiler would force all

subclasses to implement the method.

In CFCs we have to find a different

mechanism, as no concept of abstract yet

exists. I chose to have the base Card CFC

throw an error as its implementation of

initializeValueMap(). If each subclass

overrides the method, the error will never

be thrown. If a subclass fails to override,

however, the base class’s method will be

called and the error raised.

The compareTo(Card) method

receives an object of type Card (note that

the type is deliberately made general).

The Card object uses the value map set

by the subclass to determine its ranking

compared to the argument sent to it. It

returns a number: 1 if it outranks the

passed-in Card, -1 if it is outranked, and 0

if both Cards have the same value.

A single playing card is part of a card

deck, of course, and our next class must

model the deck. I used the same type-

subtype scheme to create a CardDeck

and a PokerDeck class. The methods of

the base class, CardDeck, include

dealCard(): Card, hasNext(): boolean,

shuffle(), getDealtCards(): array, and

getUndealtCards(): array.

In addition to these public methods,

im
a

g
e

 I
II

CardDeck defines the private method,

newDeck(), which generates individual

Cards and clears the undealtCards array.

The shuffle() method uses the newDeck()

method and both are meant to be overrid-

den in subclasses. To help ensure this, the

methods throw errors in the base class.

One of the advantages of OO is

greater reusability of code, and we note

that these four classes can be used to cre-

ate many different card games. Our War

card game will be implemented as a CFC,

War, that uses both PokerCard and

PokerDeck and their superclasses (super-

class is another term for base class).

The class has the following public

methods: play(): string,

setDeck(CardDeck). In addition, all of the

classes we’ve seen have an init() method,

which deserves some explanation. Most

OO languages have the concept of a spe-

cial “method,” called a constructor that is

automatically called when a new object is

created. This is used to initialize variables

and prepare the object for use.

Unfortunately, at this point, CFCs

have no built-in constructor, so

ColdFusion developers (intrepid lot that

they are) have coalesced around a pseu-

do-constructor called init(). While it’s not

called automatically, developers adopt

the habit of always instantiating a CFC

using the following syntax:

<cfset objectName = CreateObject(‘com-

ponent’, ‘CFCname’).init() />

The init() method can accept argu-

ments and always returns the newly cre-

ated object, once any initialization occurs.

I recommend that all your CFCs have an

init() method – even those CFCs that

need no initialization. This allows devel-

opers to always create new objects using

the syntax shown above.

Note that the init() method of our

War.cfc accepts a CardDeck. If you want-

ed to create your own version of War that

worked slightly differently, you might do

so by passing a CardDeck of Card types

that implement compareTo(Card):

boolean a bit differently. You could, for

example, create a War game in which the

lowest card always wins.

The play method deals cards to two

players, identified as Red and Blue. It calls

one of the card’s compareTo() method,

sending it the other card. Finally, it

returns a string indicating who won and

what the current score is.

To test out the system, I created a

very simple Tester.cfm file:

<cfset pd = CreateObject('component',

'PokerDeck').init() />

<cfset game = CreateObject('compo-

nent', 'War').init(pd) />

<cfoutput>

<cfloop

condition="#game.getDeck().hasNext()#"

>

#game.play()#

</cfloop>

</cfoutput>

While there are remaining undealt

cards, the game will play the cards and

will report whether Red or Blue finally

won.

Conclusion
If you’re new to CFCs and/or OO, you

might want to take this code and expand

it. You might add code to account for the

situation when a tie occurs. In the real

game, a “war” is declared and three cards

are dealt. The winner of the next deal

wins that hand plus all six of the “war”

cards. Or, you might decide to build an

interface to the system that will allow it

to be played by real people. You can

download the code at

http://halhelms.com/index.cfm?fuse

action=code.detail.

From this simple example, we can see

encapsulation, polymorphism, and inheri-

tance at work. These three tenets of OO,

when properly used, can help us write

code that is robust, reusable, and main-

tainable.

code I

42 • MXDJ.COM 7 • 2004

<cfcomponent displayname="Address"

hint="I represent an Address">

<cfset variables.street = "" />

<cfset variables.city = "" />

<cfset variables.state = "" />

<cfset variables.zip = "" />

<cffunction name="init" access="pub-

lic" returntype="Address"

output="false">

<cfargument name="street"

type="string" required="true" />

<cfargument name="city"

type="string" required="true" />

<cfargument name="state"

type="string" required="true" />

<cfargument name="zip"

type="string" required="true" />

<cfset setStreet(arguments.street)

/>

<cfset setCity(arguments.city) />

<cfset setState(arguments.state) />

<cfset setZip(arguments.zip) />

<cfreturn this />

</cffunction>

<cffunction name="getStreet"

access="public" returntype="string"

output="false">

<cfreturn variables.street />

</cffunction>

<cffunction name="setStreet"

access="public" returntype="void"

output="false">

<cfargument name="street"

type="string" required="true" />

<cfset variables.street = argu-

ments.street />

</cffunction>

<cffunction name="getCity"

access="public" returntype="string"

output="false">

<cfreturn variables.city />

</cffunction>

<cffunction name="setCity"

access="public" returntype="void"

output="false">

<cfargument name="city"

type="string" required="true" />

<cfset variables.city = argu-

ments.city />

</cffunction>

<cffunction name="getState"

access="public" returntype="string"

output="false">

<cfreturn variables.state />

</cffunction>

<cffunction name="setState"

access="public" returntype="void"

output="false">

<cfargument name="state"

type="string" required="true" />

<cfset variables.state = argu-

ments.state />

</cffunction>

<cffunction name="getZip"

access="public" returntype="string"

output="false">

<cfreturn variables.zip />

</cffunction>

<cffunction name="setZip"

access="public" returntype="void"

output="false">

<cfargument name="zip"

type="string" required="true" />

<cfset variables.zip =

arguments.zip />

</cffunction>

</cfcomponent>

Hal Helms (www.hal

helms.com) is a Team

Macromedia member

who provides both

on-site and remote

training in

ColdFusion, Java,

and Fusebox. Hal is

cofounder of the

Mach II project.

hal@fusebox.org

acromedia Director is best

known for building

games, 3D simulations,

and animations. What a lot of developers

probably don’t realize is that Director can

also be used to build elaborate applica-

tions, and even more so now with the

release of Director MX 2004, which sup-

ports ECMAScript-compliant JavaScript

syntax.

Although Director is seldom men-

tioned as a serious contender in the

applications development arena, it may

very well be the best-kept secret in town!

This article discusses what an application

is by today’s standards, and why applica-

tions are still required when everything

else seems to be moving to the Web. We

then introduce Director and show how it

can be used as a great application devel-

opment tool. In order to do so, we break

an application down into its three main

components – user interface, data man-

agement, and logic – and we explore

how Director can be best used to imple-

ment these three main components.

Relevance of Applications
What Is Today’s Definition of

an Application?

Ten years ago it was easy to define

what an application was; it basically was

anything that ran on a computer, and the

content was referred to as “documents.”

Today it is harder to define “application,”

as the boundary between documents

(data) and applications (programs) has

since blurred. Some documents, such as

PDFs with embedded JavaScript or inter-

active PowerPoint presentations, do pret-

ty much what an application use to do.

On the other hand, some Web-based

applications are very basic and can hardly

be classified as an application as they

lack the logic, personalization, and inter-

activity that is normally associated with

an application. For the intent of this arti-

cle, an application will be defined as a

stand-alone medium that interacts with

end users and performs some nontrivial

logical tasks. Examples of such applica-

tions are:

• An electronic catalog that informs and

guides a client through the selection

of a company’s products

• An interactive e-learning environment

or a personalized itinerary planner for

conference attendees

Such applications can be delivered as

CD-ROMs, information kiosks shared by

users, or downloadable installers to be

executed on end users’ computers. Image

I shows an advanced application built

with Macromedia Director (screenshot

from Relate for Kids software, by Ripple

Effects, Inc.).

Long Live Stand-Alone
Applications

Before getting started, we should

address the question of why we still need

offline applications when everything else

seems to be migrating to the Web. There

is no doubt that the Web is a great tool

for diffusing information and applications

to millions of users. It also ensures you

can easily keep your application fresh

and content up-to-date.

Offline applications still, however,

maintain their value and offer many advan-

tages for certain types of applications and

in specific situations. For example, deliver-

ing applications to today’s booming

mobile market in many cases needs to be

done offline due to hardware and band-

width restrictions. In addition, although

bandwidth capabilities for the Internet

continue to improve, certain ultra-rich

media applications cannot be handled

today even with broadband Internet.

Furthermore, certain markets still lag

image I

app dev

The Best Kept Secret in Town

Application development with Macromedia Director
by jason macdonald & paul-catalin oros

m

44 • MXDJ.COM 7 • 2004

behind and do not have the capabilities to

easily stream large files over the Internet or

to handle bandwidth-greedy applications.

In cases where the Internet connection is

poor or where networks are unavailable,

delivering an application offline is some-

times the only way to go. Locally installing

such applications can help ensure your

project is optimally viewed and that end

users don’t tune out waiting for the infor-

mation to be downloaded.

CDs/DVDs are proven money-making

distribution methods that can be designed

to reasonably protect content against illicit

use. Online distribution of content and

applications, on the other hand, is more dif-

ficult to control – and is a hot topic being

discussed in courtrooms these days! If you

are selling your application, it’s definitely

worth considering a distribution method

that will ensure the highest return for you.

For increased control over licensing, offline

applications tend to be more secure than

those distributed on the Web. The profitabil-

ity of online distribution can be severely

hampered by users sharing their IDs and

passwords with others to access content.

Having end users install the application on

their local drive and enter a license key can

make it a lot more difficult for your applica-

tion to be distributed illegally. In addition,

information and files tend to be more

secure when locally saved than information

stored in a Web-based application.

Another advantage of offline applica-

tions is from a completely nontechnical

viewpoint. Offline applications can be

delivered on CD-ROMs, which make for

great tangible sales and marketing tools

that can be distributed to customers and

prospects. Having a physical item in hand

has a stronger impact and is more memo-

rable then simply giving out a URL.

Furthermore, CD-ROMS can be cus-

tomized and uniquely packaged to really

stand out from the crowd. The nice thing

as well is that, if positioned properly and

designed to compliment existing online

applications, they can actually be used as

an effective tool for creating additional

qualified traffic to your Web site.

Director, the Best Kept
Secret in Town

Macromedia Director obviously is

great for creating appealing and engag-

ing user interfaces. With the predefined

behaviors (which we will talk about later)

and its cross-platform capabilities, devel-

opment time is very efficient as you do

not need to worry about low-level imple-

mentation. In addition, unlike some pro-

gramming languages typically used for

building applications, Director is very

easy to learn and offers a user-friendly

development environment similar to

other Macromedia products.

Director also contains functionality

that pertains to network integration,

which makes creating hybrid

(online/offline) projects fairly simple. The

media support is excellent and now even

includes support for DVD. This means you

can use the best media type for the task

at hand and not have to worry about

converting it to another format.

How Director Differs
from Flash

There is no doubt that both Flash and

Director are great development tools,

each with its own advantages. There are,

however, a few key differences between

Director and Flash when it comes to

application development that are worth

pointing out.

One of the main differences is that

with Director, your application can access

the end-user’s operating system. This is

ideal for applications where you need to

read and write files to the user’s hard

drive or for when you need to access

external applications and specialized

hardware.

Another key difference is that Director

has an extensible plug-in architecture.

Plug-ins called Xtras allow you to add

custom features and functionality to your

application. You can create fully featured

applications that can access, launch, and

control other applications from within

the Director executable. There are hun-

dreds of existing Xtras on the market to

choose from, and if you can’t find what

you are looking for, you can always build

your own.

One final difference worth pointing

out is Director’s excellent and extensive

support of media formats. Director sup-

ports practically all formats including

DVD-Video, Flash, MP3, 3D, and AVI just

to name a few. Because Director is capa-

ble of using these file formats directly,

there is no need to convert them, which

means the quality of the file will remain

intact and there is less chance of errors

occurring. This is also a great time-saver

both when you are developing your

applications and when you are updat-

ing it.

Image II shows a Director project

using various media including PDFs

(screenshot taken from the Cosmos proj-

ect, by Hunt & Gather, Inc.).

im
a

g
e

 I
I

7 • 2004 MXDJ.COM • 45

image III

Application Development –
Best Practices

To properly develop an application, as

with most things, great planning and qual-

ity management are essential. Application

development can greatly benefit from an

additional step called “architecture.”This

step essentially aims at devising a frame-

work that adequately depicts the applica-

tion and proposes a skeleton upon which

every single feature will be built.

In the construction industry, buildings

are designed first with an architectural

drawing and, unless your building is identi-

cal to other ones, this drawing will be

unique. The same applies for software

architecture. One generic architecture can-

not be applied to a collection of applica-

tions, and it is only when an application has

been properly specified that it can be archi-

tected.

There are several proven methodolo-

gies that can help with the architecture

of an application such as, for example,

Design Patterns. Discussing the funda-

mentals of software architecture is in

itself an article, so we won’t go into it

here. We will, however, discuss one

approach that works well and that can

provide a clean framework for designing

applications. This approach involves

breaking down your architecture in terms

of three main layers: User Interface, Logic,

and Data Management. Doing this will

help provide a framework to properly

design and plan your application.

The User Interface
Right out of the box Director provides

all the basic tools required to quickly and

efficiently implement a custom user inter-

face. Items such as a text controls, push

buttons, radio buttons, and check boxes

are available and save a lot of develop-

ment time. These buttons are essential in

order for your user to be capable of inter-

acting with your application. In addition,

Director comes with widgets or visual

controls such as menus and scroll bars.

While these elements are great in

most situations, if you have spent a lot of

time and effort designing a customized

graphical user interface you may want to

use something less generic that will inte-

grate seamlessly with your design. Any

bitmap or set of bitmaps can be com-

bined with behaviors to create cus-

tomized user interface widgets. For exam-

ple, if the gray square button provided

with Director is a little bland for your proj-

ect you can create your own custom but-

ton using bitmaps, which have the same

look and feel as the rest of your project.

46 • MXDJ.COM

When your button is ready, simply put the

default state on the stage and attach the

push button behavior. In addition, when

Director imports layered image files from

applications such as Adobe Photoshop or

Macromedia Fireworks, each layer of the

image file is placed into separate cast

members, removing the need to cut out

each layer individually, which is extremely

time-consuming. Image III shows a cus-

tom button using three graphics and

Director’s behavior

While the above example shows us

how to create a customized standard but-

ton, we can take this one step further and

create a button that has a custom anima-

tion when the user rolls over it. To achieve

this there are a couple of options; howev-

er, the most reliable method is to create a

button in Flash with the different states

and import the .swf file. When the .swf

cast member is dropped onto the stage it

will automatically interact with the up,

down, and over states of the button.

If your application needs to adopt the

look and feel of the operating system

that it is running on, you can use a third-

party product called the OSControl Xtra.

The OSControl Xtra allows you to create a

user interface based on the operating

system’s settings and desktop themes.

The interface will adapt to each end

user’s system and will look as if it was cre-

ated for that particular OS.

The Text Asset Xtra, which comes with

Director, is probably the most commonly

used Xtra and is useful in almost every

project. It can be used as a means to dis-

play your data to the end user or allow

the end user to input or edit content.

Before Director MX 2004, advanced

widgets such as a treeview, calendar, or

datagrid used to be very costly and

expensive to include in your Director

project. Now, however, with the addition

of Flash components in the latest version

of Director, Macromedia has allowed us

to include these items for free with little

or no hassle whatsoever.

A very important issue at the moment

is rendering software compliant to

Section 508 of the U.S. Rehabilitation Act

(accessible software for the disabled).

Since Director MX, Macromedia has

included a Speech Xtra and behaviors

with Director, which developers can use

to help render their project accessible.

Developers can use these free tools to

enable text to be read using any standard

Text-to-Speech software on the end

user’s computer.

Logic
The logic of an application drives the

user interface by using services provided by

the Data Management layer. Logic should

be considered distinct from the user inter-

face and the data management, even

though it is closely related to them both.

Most of the programming happens at the

logic level: we describe here what the

application should react to, how it should

react, and where to find the data needed in

order to accomplish the required tasks.

Traditionally, Lingo script has been

the programming language available for

Director developers. Lingo, which is com-

pletely cross-platform, has been around

for many years and is a well-established

and documented language but is limited

to Director development. Now, however,

with the release of Director MX 2004, pro-

grammers have a second option: the

increasingly popular JavaScript syntax.

The JavaScript syntax is ideal for

developers who are accustomed to

developing for the Web as they can use

their existing knowledge to code in

Director (no need to learn a new syntax).

Using either of the Director syntaxes,

developers can develop the following

types of scripts in order to create the

back end of their application.

Behaviors
Behaviors in Director are pieces of

reusable script that are applied to sprites

to make them behave in a certain manner

or to do specific tasks. Behaviors come in

very handy when you have a functionality

that you would like to repeat on different

sprites, as parameters can be included.

Behaviors also allow for a new kind of

teamwork. More advanced programmers

can produce behaviors that nonprogram-

mers can easily use by dragging and

dropping them onto their user interface

elements. This is particularly useful when

a number of user interface elements

require the use of the same behavior.

Movie and Parent Scripts
Movie scripts can be used to respond

to key presses, mouse clicks, movie

Advertising Index

Advertiser URL Phone Page

ActivePDF www.activePDF.com 25

CFDynamics www.cfdynamics.com 866-233-9626 9

Electric Rain www.erain.com 888-613-1500 Cover 3

FuseTalk www.fusetalk.com 866-477-7542 17

HostMySite.com www.hostmysite.com/mxdj 877-248-4678 29

Information Starage+Security www.ISSJournal.com 888-303-5282 43

Interakt www.interaktonline.com 5

IT Solutions Guide www.sys-con.com 201-802-3021 49

Macromedia www.macromedia.com/go/dwupdated Cover 2

Macromedia www.macromedia.com/go/max Cover 4

PaperThin www.paperthin.com 800-940-3087 35

Seapine Software www.seapine.com 888-683-6456 6

SYS-CON e-newsletter www.sys-con.com 888-303-5282 27

SYS-CON Publication www.sys-con.com/2001/sub.cfm 888-303-5282 51

SYS-CON Reprints 201-802-3026 57

Web Services Edge East www.sys-con.com/edge 201-802-3045 23

7 • 2004 MXDJ.COM • 47

7 • 2004

MXDJ
Section Editors

Dreamweaver
Dave McFarland

Author of Dreamweaver MX 2004: The Missing

Manual, Dave can be relied upon to bring

Dreamweaver MX to life for MXDJ readers with

clarity, authority, and good humor.

Flash
Jesse Warden

A multimedia engineer and Flash developer,

Jesse maintains a Flash blog at www.jesse

warden.com and says, referring to the MX prod-

uct range, that "Things are changing, opportunity

is on the frontier, a paradigm shift is occurring for

Web design, Web applications, et al."

Fireworks
Kleanthis Economou

A Web developer/software engineer since 1995,

now specializing in .NET Framework solutions,

Kleanthis is a contributing author of various

Fireworks publications and is the technical editor

of the Fireworks MX Bible. As an extension

developer, he contributed two extensions to the

latest release of Fireworks.

FreeHand
Louis F. Cuffari

Cofounder and art director of Insomnia Creations

(www.insomniacreations.com), Louis has spent

most of his life as a studio artist, including medi-

ums from charcoal portraits to oil/acrylic on can-

vas. In addition to studio art, he has been

involved in several motion picture projects in the

facility of directing, screenwriting, and art direc-

tion. Louis’s creative works expand extensively

into graphic design, and he has expertise in both

Web and print media. He is deputy art director

for SYS-CON Media and the designer

of MX Developer’s Journal.

Ron Rockwell
Illustrator, designer, author, and Team

Macromedia member, Ron Rockwell lives and

works with his wife, Yvonne, in the Pocono

Mountains of Pennsylvania. Ron is MXDJ’s

FreeHand editor and the author of FreeHand 10

f/x & Design, and coauthor of Studio MX Bible

and the Digital Photography Bible. He has Web

sites at www.nidus-corp.com and

www.brainstormer.org.

ColdFusion
Robert Diamond

Vice president of information systems for

SYS-CON Media and editor-in-chief of

ColdFusion Developer’s Journal, Robert was

named one of the "Top thirty magazine industry

executives under the age of 30" in Folio maga-

zine’s November 2000 issue. He holds a BS

degree in information management and technol-

ogy from the School of Information Studies at

Syracuse University. www.robertdiamond.com

48 • MXDJ.COM

events such as start and stop, and your

own custom events. They are available to

the entire movie regardless of which

frame the movie is in or which sprite the

user is interacting with. They function as

pieces of code that you want to use

throughout your movie. Parent scripts

are Director’s way of providing basic

object-oriented features to Lingo. Image

IV shows an example of Director’s script-

ing alternatives.

Data Management
The management of data in an appli-

cation is a key consideration. When ana-

lyzing and planning your data there are

two important items that need to be

looked at: the structure of your data and

how you plan to store your data. There

are several methods available; however,

the method you choose will depend

greatly on the amount and kind of data

you are dealing with.

Let’s use an e-catalog as an example.

If your e-catalog only has a few products,

you can store your content in separate

cast members (one cast member for

every piece of data). Each product would

have its own frame. While this is probably

the easiest way to manage your data

within Director, if you are planning to

update your content often this is not the

best approach.

When dealing with larger scale proj-

ects (i.e., 30–60 products in your e-cata-

log) you can dynamically link your cast

member to external files. This is done by

having one cast member serve as the con-

tainer for your content, while your data is

organized using files and folders on the

hard disk. You can load your external files

by setting the filename of the cast mem-

ber to the desired file on the hard drive.

When loading text into your application

you can also use the FileIO Xtra that

comes with Director. The FileIO Xtra allows

you to open the desired text and read the

content of the file into your text cast

member. Using this approach also offers

the major benefit that if the end user

modifies the content of the cast member,

you are able to save their changes back to

the file located on their hard drive, an

option that is not available when setting

the filename of the cast member.

If, however, your e-catalog will contain

hundreds of products that share similar

attributes (item number, dimensions,

color, price, etc.), or if your products

require frequent updating, you should

consider using a database Xtra to manage

your data. This greatly facilitates the

updating of your content by avoiding

duplication of related information. There

are several third-party database solutions

available on the market. Choosing the

right one for your project depends signifi-

cantly on what your needs are. Some of

the databases, such as the V12 Database

Engine and FileFlex, offer a universal

widest-reach kind of solution. These data-

bases are cost effective for simpler proj-

ects, where they can reduce development

time. Should your project require more

advanced queries such as combinations of

AND, OR, NOT queries, then databases like

Valentina are more suitable. These more

powerful database solutions, however, do

require additional skill and experience to

work with. If your project is Windows-only,

Datagrip offers a good combination of

both power and convenience. If you want

to access a live database through a net-

work, GoldenGate, ADOXtra and Arca are

both worth considering, or if you don’t shy

away from Web server–side scripting,

im
a

g
e

 I
V

xile written & illustrated by louis f. cuffari 8

Director’s own HTTP communications

functions can access CGI scripts.

XML is a very popular format, especially

for data exchange. For instance if your

company’s inventory system provides an

XML file or an XML Web service, you can

use Director’s XML parser to retrieve data

from your Web site to parse, read, and use

the content within the application. This can

be very useful for updating the user’s local

content to ensure that the application has

the most recent product information.

In most situations using one of the

above solutions is not enough. To get the

best results you will probably have to mix

and match the different methods to come

up with the approach best suited to your

project’s requirements. Along with the

above mentioned solutions, it is worth

mentioning that Director also provides

two very useful data structures for man-

aging small amounts of data: lists and

property lists. These structures are excel-

lent for managing the data behind the

user interface, such as populating drop-

down menus with item categories and

recording user’s choices and selections.

Conclusion
Although the trend today is toward

online applications, the need for offline

applications is still evident and the future

remains bright. There are a lot of oppor-

tunities still out there for those willing to

venture off the online path or for those

considering creating hybrid online/offline

projects. If this is the route you are look-

ing to explore, then Director is definitely

something to consider for your arsenal.

However, as with any kind of develop-

ment, the success of a project is not solely

based on the tools you select. Having the

right tools in hand is an important aspect,

but a successful project is often also a result

of having the combination of the best

methods and the required engineering

skills to get the most out of the tools you

select. With the right skills and methods,

Director can be a very powerful tool; in fact

when used optimally it could very well be

the best-kept development secret in town!

Useful Links
For those who are new to Director,

Macromedia offers a free fully functional

trial version of the product on their site,

www.macromedia.com/downloads.

Third-Party Xtras

• OSControl Xtra:

http://xtras.openspark.com

• V12 Database Engine:

www.V12DBE.com

• Valentina: www.paradigmasoft.com

• Datagrip: www.datagrip.com

• FileFlex: www.fileflex.com

• ADOXtra: www.mediamacros.com

• Arca Database Xtra: http://xtras.

tabuleiro.com

• GoldenGate: www.ggdbc.com

Images

• Relate for Kids Project: Ripple Effects, Inc.:

www.rippleeffects.com

• Cosmos Project: Hunt & Gather, Inc.:

www.huntandgather.com

Jason MacDonald is a Multimedia

Project Manager for Integration New

Media. He has been developing projects

with Macromedia Director for the past

seven years, and is an active member of

the Director community.

jason@integrationnewmedia.com

Paul-Catalin Oros has been working for

Integration New Media as project manager

for the past eight years. Paul specializes in

database management and Web applica-

tions and works closely with Jason on all

multimedia projects requiring advanced

data management functionalities.

paul@integrationnewmedia.com

“With the release of Director MX 2004,

programmers have a second option:

the increasingly popular JavaScript syntax”

50 • MXDJ.COM 6 • 2004

■ MX Developer’s Journal
U.S. - Two Years (24) Cover: $143 You Pay: $49.99 / Save: $93 + FREE $198 CD
U.S. - One Year (12) Cover: $72 You Pay: $39.99 / Save: $32
Can/Mex - Two Years (24) $168 You Pay: $79.99 / Save: $88 + FREE $198 CD
Can/Mex - One Year (12) $84 You Pay: $49.99 / Save: $34
Int’l - Two Years (24) $216 You Pay: $89.99 / Save: $126 + FREE $198 CD
Int’l - One Year (12) $108 You Pay: $59.99 / Save: $48

SUBSCRIBE TODAY
TO MULTIPLE MAGAZINES

3-Pack
Pick any 3 of our
magazines and save
up to $21000

Pay only $99 for a
1 year subscription
plus a FREE CD
• 2 Year – $179.00
• Canada/Mexico – $189.00
• International – $199.00

6-Pack
Pick any 6 of our
magazines and save
up to $34000

Pay only $199 for a
1 year subscription
plus 2 FREE CDs
• 2 Year – $379.00
• Canada/Mexico – $399.00
• International – $449.00

9-Pack
Pick 9 of our
magazines and save
up to $27000

Pay only $399 for a
1 year subscription
plus 3 FREE CDs
• 2 Year – $699.00
• Canada/Mexico – $749.00
• International – $849.00

RECEIVE
YOUR DIGITAL

EDITION
ACCESS CODE
INSTANTLY

WITH YOUR PAID
SUBSCRIPTIONS

*WHILE SUPPILES LAST. OFFER SUBJECT TO CHANGE WITHOUT NOTICE

A LIMITED TIME SAVINGS OFFER FROM SYS-CON MEDIA

SUBSCRIBE TODAY
TO MULTIPLE MAGAZINES

Subscribe Online Today www.sys-con.com/2001/sub.cfm

AND SAVE UP TO $340 AND
RECEIVE UP TO 3 FREE CDs!*

■ Web Services Journal
U.S.- Two Years (24) Cover: $168 You Pay: $99.99 / Save: $68 + FREE $198 CD
U.S. - One Year (12) Cover: $84 You Pay: $69.99 / Save: $14
Can/Mex - Two Years (24) $192 You Pay: $129 / Save: $63 + FREE $198 CD
Can/Mex - One Year (12) $96 You Pay: $89.99 / Save: $6
Int’l - Two Years (24) $216 You Pay: $170 / Save: $46 + FREE $198 CD
Int’l - One Year (12) $108 You Pay: $99.99 / Save: $8

■ JDJ
U.S. - Two Years (24) Cover: $144 You Pay: $99.99 / Save: $45 + FREE $198 CD
U.S. - One Year (12) Cover: $72 You Pay: $69.99 / Save: $12
Can/Mex - Two Years (24) $168 You Pay: $119.99 / Save: $48 + FREE $198 CD
Can/Mex - One Year (12) $120 You Pay: $89.99 / Save: $40
Int’l - Two Years (24) $216 You Pay: $176 / Save: $40 + FREE $198 CD
Int’l - One Year (12) $108 You Pay: $99.99 / Save: $8

■ LinuxWorld Magazine
U.S. - Two Years (24) Cover: $143 You Pay: $79.99 / Save: $63 + FREE $198 CD
U.S. - One Year (12) Cover: $72 You Pay: $39.99 / Save: $32
Can/Mex - Two Years (24) $168 You Pay: $119.99 / Save: $48 + FREE $198 CD
Can/Mex - One Year (12) $84 You Pay: $79.99 / Save: $4
Int’l - Two Years (24) $216 You Pay: $176 / Save: $40 + FREE $198 CD
Int’l - One Year (12) $108 You Pay: $99.99 / Save: $8

■ .NET Developer’s Journal
U.S. - Two Years (24) Cover: $168 You Pay: $99.99 / Save: $68 + FREE $198 CD
U.S. - One Year (12) Cover: $84 You Pay: $69.99 / Save: $14
Can/Mex - Two Years (24) $192 You Pay: $129 / Save: $63 + FREE $198 CD
Can/Mex - One Year (12) $96 You Pay: $89.99 / Save: $6
Int’l - Two Years (24) $216 You Pay: $170 / Save: $46 + FREE $198 CD
Int’l - One Year (12) $108 You Pay: $99.99 / Save: $8

■ ColdFusion Developer’s Journal
U.S. - Two Years (24) Cover: $216 You Pay: $129 / Save: $87 + FREE $198 CD
U.S. - One Year (12) Cover: $108 You Pay: $89.99 / Save: $18
Can/Mex - Two Years (24) $240 You Pay: $159.99 / Save: $80 + FREE $198 CD
Can/Mex - One Year (12) $120 You Pay: $99.99 / Save: $20
Int’l - Two Years (24) $264 You Pay: $189 / Save: $75 + FREE $198 CD
Int’l - One Year (12) $132 You Pay: $129.99 / Save: $2

■ PowerBuilder Developer’s Journal
U.S. - Two Years (24) Cover: $360 You Pay: $169.99 / Save: $190 + FREE $198 CD
U.S. - One Year (12) Cover: $180 You Pay: $149 / Save: $31
Can/Mex - Two Years (24) $360 You Pay: $179.99 / Save: $180 + FREE $198 CD
Can/Mex - One Year (12) $180 You Pay: $169 / Save: $11
Int’l - Two Years (24) $360 You Pay: $189.99 / Save: $170 + FREE $198 CD
Int’l - One Year (12) $180 You Pay: $179 / Save: $1

■ WebSphere Journal
U.S. - Two Years (24) Cover: $216 You Pay: $129.00 / Save: $87 + FREE $198 CD
U.S. - One Year (12) Cover: $108 You Pay: $89.99 / Save: $18
Can/Mex - Two Years (24) $240 You Pay: $159.99 / Save: $80 + FREE $198 CD
Can/Mex - One Year (12) $120 You Pay: $99.99 / Save: $20
Int’l - Two Years (24) $264 You Pay: $189.00 / Save: $75
Int’l - One Year (12) $132 You Pay: $129.99 / Save: $2

■ 3-Pack ■ 1YR ■ 2YR ■ U.S. ■ Can/Mex ■ Intl.

■ 6-Pack ■ 1YR ■ 2YR ■ U.S. ■ Can/Mex ■ Intl.

■ 9-Pack ■ 1YR ■ 2YR ■ U.S. ■ Can/Mex ■ Intl.

Pick a 3-Pack, a 6-Pack or a 9-Pack

•Choose the Multi-Pack you want to order by checking
next to it below. •Check the number of years you want to
order. •Indicate your location by checking either U.S.,
Canada/Mexico or International. •Then choose which
magazines you want to include with your Multi-Pack order.

TO
ORDER

CALL TODAY! 888-303-5282

■ Information Storage + Security Journal
U.S. - Two Years (24) Cover: $143 You Pay: $49.99 / Save: $93 + FREE $198 CD
U.S. - One Year (12) Cover: $72 You Pay: $39.99 / Save: $39
Can/Mex - Two Years (24) $168 You Pay: $79.99 / Save: $88 + FREE $198 CD
Can/Mex - One Year (12) $84 You Pay: $49.99 / Save: $34
Int’l - Two Years (24) $216 You Pay: $89.99 / Save: $126 + FREE $198 CD
Int’l - One Year (12) $108 You Pay: $59.99 / Save: $48

Bes

52 • MXDJ.COM 7 • 2004

Design the Process
You already know to do your informa-

tion architecture (IA), user interface (UI),

and usability design for software before

the visual layout and software develop-

ment. You may even have the time, budg-

et, and foresight to do usability testing

focused on your target user base with

wire frames on paper or with quick soft-

ware mockups before starting on graph-

ics and code. But for a kiosk, the product

is more than an executable file; it is the

entire system and process. Besides creat-

ing a simple and intuitive UI, you want to

simplify the installation, deployment, and

support of your kiosk.

Run the entire process through an

IA/UI/usability design phase. Create end-

to-end use cases; remember to include

service and support personnel as users as

well as the end user. Consider every

aspect you are responsible for or interact

with. Don’t forget:

• Computer hardware

• Peripherals

• Cabinetry

• The operating system (OS) and third-

party software

• Networking

• Installers

• Documentation and training manuals

• Online portions

• Administration and configuration com-

ponents

• UL-type consumer safety testing and

certification

• Contracts with third-party vendors

• Support systems

If no one considers a component, such

as the base system OS, as a part of the end

product, no one will be assigned responsi-

bility for it and have time budgeted for it.

Parts of your process that fall through the

cracks will fall to whoever has the free

time or gets stuck with it at the last

minute, not the best person for the job.

Your initial sketches, charts, and use

cases don’t have to be incredibly

detailed. It is better to realize that these

“work products” are just as important to

plan, document, and have in source con-

trol as the code. Continue to add to them

and assign responsibility for the sections

as the project grows.

We Control the Hardware
Choose Your Platform

Look at the entire scope of the proj-

ect to determine which platform(s) you

are going to focus on and develop on. It

may be helpful to develop for full cross-

platform compatibility even if the in-

kiosk machine specification is for

only one. A cross platform–compli-

ant program can quickly turn into

a demo CD-ROM or be viewed

by that one client who uses

“the other platform.”You

also want to try to keep

your options as open as

possible to limit your

risk to hardware

going out of pro-

duction. There are

several limiting fac-

tors on your hardware selection: certain

required hardware components, compo-

nents without drivers or features for a

particular OS, sponsorship arrangements

with hardware providers, and required

software components such as an ActiveX

controller for a digital camera.

Use industrial hardware components

whenever possible for parts that the end

user interacts with. Or, use cheap con-

sumer devices with plenty of spares and

a quick replacement process. Most con-

sumer keyboards, mice, trackballs, and

joysticks weren’t made to withstand chil-

7 • 2004 MXDJ.COM • 53

54 • MXDJ.COM 7 • 2004

dren playing on them and drinks being

spilled on them daily. I have seen con-

sumer components with impressive

technical specs used – and replaced

after a year’s worth of sub-par perform-

ance.

With keyboards there are several

options:

• On-screen with a touch-screen moni-

tor: This works best for a small amount

of data. It may be more prone to van-

dalism and require more frequent

cleaning, and have a major impact

upon the UI/usability and visual design.

• Custom industrial keyboard: This is a

more expensive option and probably

requires a third-party vendor, may

require a Quality Control/Quality

Assurance cycle of its own, and allows

you to define exactly which keys are

available to the user.

• Standard keyboard (industrial or con-

sumer): This keyboard already exists, is

less expensive and more thoroughly

tested than a custom one, and will

require some work with the OS to lock

out certain keys and key combinations

to protect your system.

Choose your industrial hardware sup-

plier and/or physical kiosk fabricator

carefully, though. My last kiosk project

had a running joke about the vendor’s

“Don’t worry about it, we’ll handle it” atti-

tude and inability to complete even sim-

ple tasks. They shipped us a “new replace-

ment trackball” that had been removed

from service three months prior. The

stainless steel kiosk cabinetry arrived on

location in a distant city without a hole

for power cables to exit. Custom industri-

al keyboards had their letters rubbed off

by use within six months.

Just as you may separate generic

code and graphics from specific, it can be

helpful to keep user-generated data sep-

arate from the OS and application. When

the OS hard drive becomes physically

damaged, you won’t lose any of the pre-

vious data. You may even separate the OS

from the application.

And We Control the
Software

The basic kiosk is just an application

program (the Show) running in a box. It

probably has an “attract loop” that runs

between user sessions, and a time-out

mechanism that detects when someone

has walked off and returns the applica-

tion to the attract loop.

The Show (and other kiosk applica-

tions) should create at least a couple of

levels of logs. A user-interaction log will

record the path the user takes through

the application in order to data mine for

information about how the kiosk is used.

Each component may also have its own

process or debug log to record the

progress through the code, the begin-

ning and finishing of functions and meth-

ods, relevant variables and states in the

case of trapped errors, interactions

between components on the kiosk, as

well as attempts to talk to other

machines and network processes. These

debug logs are indispensable in solving

problems if the kiosk does lock up, crash,

or error, or even in knowing whether the

problem is the code module, the data,

the network, or a change to another

component having side effects. All log

files should be written locally in case off-

kiosk communication isn’t working and

may also be remotely accessed or

uploaded to a central location. The data

may also be transmitted to a server as it is

generated so you can track exactly where

a user is, or as part of some multi-user

system.

Logging data can be very important

for understanding the long-term usage

of your kiosks. It also may be important

to have archived for historical data: I

have parsed through debug logs to dis-

cover that the 1.3 release was actually

more stable than the 1.2 release –

despite the client’s convictions to the

contrary. Version 1.3 was receiving refo-

cused attention due to the upgrade,

showing the weakness of relying on

anecdotal evidence of kiosk perform-

ance.

The Show and kiosk components

have a variety of ways to transmit data

depending upon your situation: it can be

sent immediately via a direct connection,

sent as tasks are completed (at the end of

a user session), or queued up in batches

to be sent only late at night.

Use audio sparingly and wisely. Audio

should work with the entire kiosk, not be

something someone just throws in at the

end. If you do have audio, consider what

can be done to make it more tolerable to

any people who work around your kiosk

installation. There can be quite a lot of

intentional damage to your kiosk installa-

tion if it aggravates the people who have

to work around it. Even during develop-

ment, it may not be long before someone

who sits near the QA machine asks some-

one to turn off the sound. (A cheap pair

of headphones left plugged into each

machine may help ensure office tranquili-

ty and allow people to hear the audio

when they need to.) Attract loop audio

can be especially annoying. Adding ran-

domness and variability to the attract

loop audio can greatly increase the expe-

rience for people exposed to the kiosk for

long periods of time.

Herd animals use deep bass “lowing”

sounds because these can travel over

greater distances and are hard for preda-

tors to pinpoint the location of. Unless

you are creating a kiosk about cows,

dinosaurs, or the science of sound waves,

you should avoid bass, especially when

you have a group of kiosks together. This

also means you can save money by not

buying a subwoofer for the kiosk sound

system.

One way to reduce the risk of the

effect of downtime due to computer

errors is a software or hardware “watch-

dog” component that reboots the

machine if the show quits giving it a sig-

im
a

g
e

 I

7 • 2004 MXDJ.COM • 55

nal on a regular interval. A hardware ver-

sion is more reliable than a software solu-

tion because the machine may lock up

beyond the ability of the software to

restart the system. The watchdog doesn’t

solve any problems with the kiosk crash-

ing, and any user interacting with the

kiosk when it crashes will still have a bad

experience; however, if the kiosk is auto-

matically back up and running shortly, it

may still give many users a good experi-

ence. A kiosk that has crashed or locked

up (possibly with sensitive user informa-

tion left on screen) and sits for hours or

days can give a lot of potential users a

bad experience.

The kiosk may also require access to

configuration settings, utility functions,

and the standard OS. It may be helpful to

be able to view logs, turn “restricted keys”

on the keyboard back on, or to re-enable

the cursor on a touch-screen kiosk for

development and testing with a mouse.

These configuration components and

utilities may also be useful as parts of the

Console.

The basic idea of the Console is to be

able to control any kiosk from anywhere.

Technically proficient on-site support is

expensive; design and develop as if you

will never be able to have a live human

configure or support it again. If pro-

grammed well, a configuration applica-

tion may work on kiosk, on a local con-

sole machine, and as a remote console,

possibly through a Web interface. By

making these features usable anywhere,

you can change settings or fix problems

from around the world or right in front of

a suspect kiosk with a wireless device,

with the same interface.

The console should be able to make

configuration changes to the kiosks,

either to a specific kiosk, or broadcast

changes to groups of them. It may be

useful to be able to control a kiosk by

sending it a message that simulates a

button push, allowing you to remotely

“drive” the kiosk through a workflow.

So, How Are the Kiosks
Doing?

One of the most useful features for

your remote console is a “heartbeat mon-

itor.” (see Image I). The Show can send a

“heartbeat” at a regular interval to a

remote server, and the heartbeat monitor

allows you to view that information. The

im
a

g
e

 I
I

im
a

g
e

 I
II

56 • MXDJ.COM 7 • 2004

heartbeat contains a minimal amount of

information: kiosk ID, time and date (if

the kiosk is scheduled, otherwise skip it

and just use the server’s time), and

maybe what state the kiosk is in. Some

useful states are “StartUp” when the

machine reboots, “Error” if an error has

been trapped and the kiosk is in an error

state, “OK” when the kiosk is running fine,

or any other modes or states the kiosk

has, such as a “Night” or “Closed” mode,

or periods of inactivity. The heartbeat

monitor then allows to you see what is

going on with your kiosks. The minimal

heartbeat monitor may just display a

green light next to a kiosk name that is

okay, a red light next to one that isn’t.

Without this, you don’t have an answer to

the question, “How are the kiosks doing?”

You can also display more information

such as state, timestamps for last error,

last restart, last OK ping, etc. With this

information, you may end up alerting

support staff to things such as the net-

work being down or kiosks needing

rebooting, or that maybe something else

is wrong because, for example, no has

used Kiosk 12 all day.

The heartbeat monitor can also come

in handy when you’re running QA tests.

Your team can monitor the 10 machines

across the hall in the QA lab all day

instead of walking back and forth only a

couple of times a day.

The holy grail of modern kiosk devel-

opment is remote updating. If you never

have to physically intervene with a kiosk

in order to change the underlying soft-

ware, you can greatly decrease the cost

of bug fixes, content changes, upgrades,

and updates. The console should be able

to schedule remote updates and view

versioning information for all the kiosks.

The console application may also be

able to create and display other kiosk

information, including data-mining infor-

mation. Any information that can be used

to chart user interactions, display usage

statistics, orders, purchases, media usage,

kiosk uptime or downtime, revenue, etc.

Image II shows the console application

main screen; Image III shows the console

“settings” screen.

The Operating System and
Supporting Applications

The creation process of the base OS

and the installation of any drivers or sup-

porting application programs is just as

important to the success of your kiosk as

the kiosk show application. Any third-

party software required for your kiosk to

run should be handled here. This process

should be well documented, controlled,

and versioned. Small things like the order

of installing drivers may be important.

Don’t upgrade any component without

realizing the inherent risk that change

can pose. Make changes one at a time

with testing, just as you would test major

software changes. The more open-ended

you can build this process, the better.

Work to have a single OS recovery pack-

age that will adapt and work for variant

hardware.

Quality Assurance, Too
Develop on Your Target Platform

and Environment

The more restricted the target hard-

ware/OS/supporting application environ-

ment is the more important this is. I

know...I’ve got a snazzy laptop and I don’t

like the “other” platform either. But it

takes only a couple of seconds to test a

feature or make a screenshot to illustrate

a problem on the target platform. And if I

can’t control that camera with my pre-

ferred system or I can’t interface with the

database because we don’t have a net-

work, the development process will take

much longer.

im
a

g
e

 IV

Visual designers should also inspect

their artwork on the target hardware dis-

plays. Graphics look a lot different in a

dark cubicle on a perfectly tweaked 21”

flat-screen monitor than they may on an

out-of-the-box touch-screen monitor in a

brightly lit room. LCD monitors may have

problems displaying high-contrast

images. Find out that the black, white,

and red interface looks like with badly

compressed JPG graphics on the kiosk’s

LCD screen before the client has signed

off on the design and all the hardware

has been purchased.

Test on Your Target Platform

Independent of your development

system, you should have a target plat-

form with controlled and documented

hardware, OS, and supporting applica-

tions.

Test for the Long Term

Most multimedia application pro-

grams are run for only a relatively short

amount of time in one session and can

be recovered by the user if necessary. But

tiny memory leaks can add up over 12 or

72 hours, and may be caused by your

application, faulty supporting applica-

tions, or even a specific combination of

motherboard, audio card, video card, and

drivers.

Have at least a basic test constantly

running on the target platform. I’ve been

known to utilize “RECORDER.EXE” from

Windows 3.1 to record primitive user

interactions and then loop them for a

week. There are much more sophisticated

testing programs available. Target a full

week of uptime, but build in a daily

reboot if your product allows.

You’ll also want to have a real QA

process. Because you have a narrow tar-

get platform, QA can spend their time on

the software functionality, rather than

testing for compatibility issues. QA

should evaluate and verify the entire

process, not just the program, whenever

possible, from building the OS, adding

supporting applications, installing the

application, configuring and deploying,

and hardware component replacement.

Support
While you may not be actively

involved in supporting the kiosk over the

full life of its deployment, there are many

things that you can do to aid the support

of the system.

Keep a backup of the base OS and of

the OS plus the kiosk application at hand

at any deployment. This can be used to

wipe a troublesome machine clean or to

format a replacement machine.

Ralph Waldo Emerson said, “A foolish

consistency is the hobgoblin of little

minds,” but a reasonable consistency is

necessary for kiosks. Imagine trying to fix

an upside-down kiosk monitor in a

remote location and discovering that two

of the screws in the bracket holding the

monitor require a star screwdriver bit.

Work for consistency. Watch for computer

hardware consistency – chipsets change

in production runs and you never realize

the variability in what appears to be the

same video card until something doesn’t

work. Demand consistency from any

third-party providers.

Take pictures of the hardware when it

is set up correctly, as an illustration. Take

pictures of the finished and deployed

kiosks for reference later (see Image IV). It

may take a long time to figure out

remotely that the problem with

the kiosk is related to which

USB port the digital camera is

plugged into.

Keep an adequate supply of

replacement hardware on hand

at the deployment site.

Hardware seems to fail in pairs,

but it may be that hardware

failures are only noticed and

reported by local staff after

multiple units have failed. If you

have a bug reporting console

component that can be used

on-kiosk or on a console

machine, you will receive more

accurate and helpful data than

someone trying to decipher a

handwritten log a week later.

Remember that local personnel

are already fully employed;

don’t count on adding any task

to someone’s job, even if it will

“just take a minute.”The securi-

ty guard doesn’t want the

added task of shutting down all

your machines every night any

more than you do. Make sure

any contracts and agreements

define who is responsible for

and who pays for upkeep,

cleaning, checking on the physical sys-

tem (blown monitors) and theft/vandal-

ism.

How hard or easy it is to support your

kiosk systems is going to depend upon

how well you are able to document, con-

trol changes, and simplify systems during

development.

Conclusion
Kiosk systems can be rewarding to

develop, allowing for far greater con-

trol over the system and the ability to

push the limits of multimedia develop-

ment. A kiosk is so much more than the

interface the user interacts with, and

thus requires more planning and

development than typical multimedia

software.

Roy Crisman is a multimedia developer

who has developed kiosks systems for the

Adler Planetarium, The Smithsonian

Institution, Epcot Center, the El Capitan

Theatre, National Parks, and traveling spe-

cial events for Eastman Kodak and Disney.

MXDJ@brokenoffcarantenna.com

7 • 2004 MXDJ.COM • 57

58 • MXDJ.COM 7 • 2004

va
n

g
u

a
rd

o date, over 5 million viewers have logged on to The

Meatrix, (www.themeatrix.com), a cutting-edge Flash

animation piece. Through a cartoon pig named Leo,

and a trenchcoat-clad cow named Moopheus, The

Meatrix is educating consumers on the consequences of

factory farming while touting the benefits of sustainable

meat through a highly effective persuasive tool – humor.

The Meatrix was created by Free Range Graphics

(www.freerangegraphics.com), a design firm serving non-

profit groups, as part of its annual Free Range Graphics

Flash Grant, which was awarded in 2003 to the Global

Resource Action Center for the Environment (GRACE,

www.gracelinks.org).

The Meatrix

t

